On the inclusion of some Lorentz spaces

被引:0
|
作者
Gürkanli, AT [1 ]
机构
[1] Ondokuz Mayis Univ, Fac Art & Sci, Dept Math, TR-55139 Kurupelit, Samsun, Turkey
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, Sigma, mu) be a measure space. It is well known that l(p)(X) subset of or equal to l(q) (X) whenever 0 < p less than or equal to q less than or equal to infinity. Subramanian [12] characterized all positive measures it on (X, E) for which L-p(mu) subset of or equal to L-q (mu) whenever 0 < p less than or equal to q less than or equal to infinity and Romero [10] completed and improved some results of Subramanian [12]. Miamee [6] considered the more general inclusion L-p(mu) subset of or equal to L-q (nu) where mu and nu are two measures on (X, Sigma). Let L(p(1), q(1))(X, mu) and L(p(2), q(2))(X, nu) be two Lorentz spaces,where 0 < p(1), p(2) < infinity and 0 < q(1), q(2) less than or equal to infinity. In this work we generalized these results to the Lorentz spaces and investigated that under what conditions L(p(1), q(1)) (X, mu) subset of or equal to L(p(2), q(2)) (X, nu) for two different measures mu and nu on (X, Sigma).
引用
收藏
页码:441 / 450
页数:10
相关论文
共 50 条
  • [31] SOME GEOMETRIC-PROPERTIES OF LORENTZ-ORLICZ SPACES
    LIN, PK
    SUN, HY
    ARCHIV DER MATHEMATIK, 1995, 64 (06) : 500 - 511
  • [32] Geometric properties of some Calderon-Lozanovskii spaces and Orlicz-Lorentz spaces
    Hudzik, H
    Kaminska, A
    Mastylo, M
    HOUSTON JOURNAL OF MATHEMATICS, 1996, 22 (03): : 639 - 663
  • [33] Some extensions of optimal interpolation in spaces of Lorentz-Zygmund type
    Pustylnik, E
    POSITIVITY, 2002, 6 (01) : 17 - 30
  • [34] Some properties and interpolation theorems in weak Orlicz-Lorentz spaces
    Fan, L-P
    Ma, C-B
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (01) : 28 - 45
  • [35] On some geometric properties of generalized Orlicz-Lorentz function spaces
    Foralewski, Pawel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (17) : 6217 - 6236
  • [36] Some Fourier inequalities for orthogonal systems in Lorentz-Zygmund spaces
    Akishev, G.
    Persson, L. E.
    Seger, A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [37] Riesz potential in the local Morrey-Lorentz spaces and some applications
    Guliyev, Vagif S.
    Kucukaslan, Abdulhamit
    Aykol, Canay
    Serbetci, Ayhan
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (04) : 557 - 567
  • [38] Fractional maximal operator in the local Morrey–Lorentz spaces and some applications
    V. S. Guliyev
    C. Aykol
    A. Kucukaslan
    A. Serbetci
    Afrika Matematika, 2024, 35
  • [39] On some geometric properties of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawel
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (02): : 346 - 372
  • [40] Are generalized Lorentz "spaces" really spaces?
    Cwikel, M
    Kaminska, A
    Maligranda, L
    Pick, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) : 3615 - 3625