On the inclusion of some Lorentz spaces

被引:0
|
作者
Gürkanli, AT [1 ]
机构
[1] Ondokuz Mayis Univ, Fac Art & Sci, Dept Math, TR-55139 Kurupelit, Samsun, Turkey
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, Sigma, mu) be a measure space. It is well known that l(p)(X) subset of or equal to l(q) (X) whenever 0 < p less than or equal to q less than or equal to infinity. Subramanian [12] characterized all positive measures it on (X, E) for which L-p(mu) subset of or equal to L-q (mu) whenever 0 < p less than or equal to q less than or equal to infinity and Romero [10] completed and improved some results of Subramanian [12]. Miamee [6] considered the more general inclusion L-p(mu) subset of or equal to L-q (nu) where mu and nu are two measures on (X, Sigma). Let L(p(1), q(1))(X, mu) and L(p(2), q(2))(X, nu) be two Lorentz spaces,where 0 < p(1), p(2) < infinity and 0 < q(1), q(2) less than or equal to infinity. In this work we generalized these results to the Lorentz spaces and investigated that under what conditions L(p(1), q(1)) (X, mu) subset of or equal to L(p(2), q(2)) (X, nu) for two different measures mu and nu on (X, Sigma).
引用
收藏
页码:441 / 450
页数:10
相关论文
共 50 条
  • [1] The inclusion theorems for variable exponent Lorentz spaces
    Kulak, Oznur
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (03) : 605 - 619
  • [2] SOME INTERSECTIONS OF LORENTZ SPACES
    Abtahi, Fatemeh
    Amini, HeidarGhaeid
    Lotfi, Hasan Ali
    Rejali, Ali
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (03): : 73 - 82
  • [3] MULTIPLIERS ON SOME LORENTZ SPACES
    Eryilmaz, Ilker
    Duyar, Cenap
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01): : 93 - 107
  • [4] Some intersections of Lorentz spaces
    1600, Politechnica University of Bucharest (78):
  • [5] Equality of Some Classical Lorentz Spaces
    Santiago Boza
    Joaquim Martín
    Positivity, 2005, 9 : 225 - 232
  • [6] Some inequalities related to the Lorentz spaces
    Machihara, Shuji
    Ozawa, Tohru
    HOKKAIDO MATHEMATICAL JOURNAL, 2013, 42 (02) : 247 - 267
  • [7] Some Rotundities of Orlicz–Lorentz Spaces
    Wan Zhong GONG
    Peng WANG
    Acta Mathematica Sinica,English Series, 2024, (08) : 1893 - 1919
  • [8] SOME INTERPOLATION RESULTS FOR LORENTZ SPACES
    MERUCCI, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (25): : 1731 - 1734
  • [9] Equality of some classical Lorentz spaces
    Boza, S
    Martín, J
    POSITIVITY, 2005, 9 (02) : 225 - 232
  • [10] Some Rotundities of Orlicz-Lorentz Spaces
    Gong, Wan Zhong
    Wang, Peng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (08) : 1893 - 1919