Monotone finite point method for non-equilibrium radiation diffusion equations

被引:14
|
作者
Huang, Zhongyi [1 ]
Li, Ye [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Tailored finite point method; Monotonicity; Nonlinear parabolic equation; Non-equilibrium; Radiation diffusion; TIME INTEGRATION; SYSTEMS; INTERFACE; TRANSPORT; MESHES;
D O I
10.1007/s10543-015-0573-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose the monotone tailored-finite-point method for solving the non-equilibrium radiation diffusion equations. We first give two tailored finite point schemes for the nonlinear parabolic equation in one-dimensional case, then extend the idea to solve the radiation diffusion problem in 1D as well as 2D. By using variable substitute, our method satisfies the discrete maximum principle automatically, thus preserves the properties of monotonicity and positivity. Numerical results show that our method can capture the sharp front and can be accommodated to discontinues diffusion coefficient.
引用
收藏
页码:659 / 679
页数:21
相关论文
共 50 条
  • [41] A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes
    Lipnikov, K.
    Svyatskiy, D.
    Vassilevski, Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (11) : 4017 - 4032
  • [42] Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes
    Lipnikov, K.
    Svyatskiy, D.
    Vassilevski, Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (03) : 703 - 716
  • [43] A Finite Volume Solver for Radiation Hydrodynamics in the Non Equilibrium Diffusion Limit
    Chauveheid, D.
    Ghidaglia, J. -M.
    Peybernes, M.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 245 - +
  • [44] A spatial-temporal asymptotic preserving scheme for radiation magnetohydrodynamics in the equilibrium and non-equilibrium diffusion limit
    Jin, Shi
    Tang, Min
    Zhang, Xiaojiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 452
  • [45] A spatial-temporal asymptotic preserving scheme for radiation magnetohydrodynamics in the equilibrium and non-equilibrium diffusion limit
    Jin, Shi
    Tang, Min
    Zhang, Xiaojiang
    Journal of Computational Physics, 2022, 452
  • [46] Non-equilibrium diffusion combustion of a fuel droplet
    Tyurenkova, Veronika V.
    ACTA ASTRONAUTICA, 2012, 75 : 78 - 84
  • [47] Non-equilibrium thermodynamics of diffusion in fluctuating potentials
    Alston, Henry
    Cocconi, Luca
    Bertrand, Thibault
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (27)
  • [48] Boltzmann equation and hydrodynamic equations: their equilibrium and non-equilibrium behaviour
    Verma, Mahendra K.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2175):
  • [49] DIFFUSION OF NON-EQUILIBRIUM CARRIERS IN DISORDERED MATERIALS
    ARKHIPOV, VI
    RUDENKO, AI
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1982, 16 (05): : 530 - 531
  • [50] Non-equilibrium distributions at finite noise intensity
    Bandrivskyy, A
    Beri, S
    Luchinsky, DG
    NOISE IN COMPLEX SYSTEMS AND STOCHASTIC DYNAMICS, 2003, 5114 : 94 - 101