Monotone finite point method for non-equilibrium radiation diffusion equations

被引:14
|
作者
Huang, Zhongyi [1 ]
Li, Ye [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Tailored finite point method; Monotonicity; Nonlinear parabolic equation; Non-equilibrium; Radiation diffusion; TIME INTEGRATION; SYSTEMS; INTERFACE; TRANSPORT; MESHES;
D O I
10.1007/s10543-015-0573-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose the monotone tailored-finite-point method for solving the non-equilibrium radiation diffusion equations. We first give two tailored finite point schemes for the nonlinear parabolic equation in one-dimensional case, then extend the idea to solve the radiation diffusion problem in 1D as well as 2D. By using variable substitute, our method satisfies the discrete maximum principle automatically, thus preserves the properties of monotonicity and positivity. Numerical results show that our method can capture the sharp front and can be accommodated to discontinues diffusion coefficient.
引用
收藏
页码:659 / 679
页数:21
相关论文
共 50 条
  • [21] A multigrid preconditioner and automatic differentiation for non-equilibrium radiation diffusion problems
    Glowinski, R
    Toivanen, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 207 (01) : 354 - 374
  • [22] BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids
    Yukhnovskii, I. R.
    Hlushak, P. A.
    Tokarchuk, M. V.
    CONDENSED MATTER PHYSICS, 2016, 19 (04)
  • [23] A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes
    Danilov, A. A.
    Vassilevski, Yu. V.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2009, 24 (03) : 207 - 227
  • [24] Anomalous diffusion in non-equilibrium systems
    Arapaki, E
    Argyrakis, P
    Tringides, MC
    SURFACE DIFFUSION: ATOMISTIC AND COLLECTIVE PROCESSES, 1997, 360 : 635 - 642
  • [25] THE CONSERVATION EQUATIONS FOR A NON-EQUILIBRIUM PLASMA
    APPLETON, JP
    BRAY, KNC
    JOURNAL OF FLUID MECHANICS, 1964, 20 (04) : 659 - 672
  • [26] Diffusion approximation of linear kinetic equations with Non-equilibrium data - Computational experiments
    Banasiak, J.
    Kozakiewicz, J. M.
    Parumasur, N.
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2005, 34 (06): : 475 - 496
  • [27] Non-equilibrium thermodynamics and anomalous diffusion
    Compte, A
    Jou, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (15): : 4321 - 4329
  • [28] Weighted Interior Penalty Method with Semi-Implicit Integration Factor Method for Non-Equilibrium Radiation Diffusion Equation
    Zhang, Rongpei
    Yu, Xijun
    Zhu, Jiang
    Loula, Abimael F. D.
    Cui, Xia
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (05) : 1287 - 1303
  • [29] Thermodynamic coupling and interfacial non-equilibrium in a finite-diffusion model of microsegregation
    Hareland, Christopher A.
    Voorhees, Peter W.
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2024, 87
  • [30] Equilibrium versus non-equilibrium surface diffusion measurements
    Tringides, MC
    Gupalo, M
    Li, Q
    Wang, X
    ANOMALOUS DIFFUSION: FROM BASICS TO APPLICATIONS, 1999, 519 : 309 - 325