A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes

被引:89
|
作者
Lipnikov, K. [1 ]
Svyatskiy, D. [1 ]
Vassilevski, Y. [2 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA
[2] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
关键词
Advection-diffusion equation; Finite volume method; Discrete maximum principle; Monotone method; Unstructured mesh; Polygonal mesh; DISCRETE MAXIMUM PRINCIPLE; TETRAHEDRAL MESHES; CONVECTION; SCHEMES; LIMITERS; GRIDS;
D O I
10.1016/j.jcp.2010.01.035
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new second-order accurate monotone finite volume (FV) method for the steady-state advection-diffusion equation. The method uses a nonlinear approximation for both diffusive and advective fluxes and guarantees solution non-negativity. The interpolation-free approximation of the diffusive flux uses the nonlinear two-point stencil proposed in Lipnikov [23]. Approximation of the advective flux is based on the second-order upwind method with a specially designed minimal nonlinear correction. The second-order convergence rate and monotonicity are verified with numerical experiments. Published by Elsevier Inc.
引用
收藏
页码:4017 / 4032
页数:16
相关论文
共 50 条
  • [1] A monotone nonlinear finite volume method for advection-diffusion equations on unstructured polyhedral meshes in 3D
    Nikitin, K.
    Vassilevski, Yu.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2010, 25 (04) : 335 - 358
  • [2] A monotone finite volume scheme for advection-diffusion equations on distorted meshes
    Wang, Shuai
    Yuan, Guangwei
    Li, Yonghai
    Sheng, Zhiqiang
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 69 (07) : 1283 - 1298
  • [3] Monotone finite volume schemes for diffusion equations on polygonal meshes
    Yuan, Guangwei
    Sheng, Zhiqiang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (12) : 6288 - 6312
  • [4] Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes
    Lipnikov, K.
    Shashkov, M.
    Svyatskiy, D.
    Vassilevski, Yu.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (01) : 492 - 512
  • [5] Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes
    Lipnikov, K.
    Svyatskiy, D.
    Vassilevski, Y.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (03) : 703 - 716
  • [6] A novel finite volume discretization method for advection-diffusion systems on stretched meshes
    Merrick, D. G.
    Malan, A. G.
    van Rooyen, J. A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 362 : 220 - 242
  • [7] A multiscale control volume finite element method for advection-diffusion equations
    Bochev, Pavel
    Peterson, Kara
    Perego, Mauro
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 77 (11) : 641 - 667
  • [8] An improved monotone finite volume scheme for diffusion equation on polygonal meshes
    Sheng, Zhiqiang
    Yuan, Guangwei
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) : 3739 - 3754
  • [9] Application of Nonlinear Monotone Finite Volume Schemes to Advection-Diffusion Problems
    Vassilevski, Yuri
    Danilov, Alexander
    Kapyrin, Ivan
    Nikitin, Kirill
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 761 - 769
  • [10] Uniformly high-order schemes on arbitrary unstructured meshes for advection-diffusion equations
    Titarev, V. A.
    Drikakis, D.
    [J]. COMPUTERS & FLUIDS, 2011, 46 (01) : 467 - 471