Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes

被引:220
|
作者
Lipnikov, K.
Shashkov, M.
Svyatskiy, D.
Vassilevski, Yu.
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Russian Acad Sci, Inst Numer Math, Moscow 117333, Russia
关键词
D O I
10.1016/j.jcp.2007.08.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a non-linear finite volume (FV) scheme for stationary diffusion equation. We prove that the scheme monotone, i.e. it preserves positivity of analytical solutions on arbitrary triangular meshes for strongly anisotropic at. heterogeneous full tensor coefficients. The scheme is extended to regular star-shaped polygonal meshes and isotropic heterogeneous coefficients. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:492 / 512
页数:21
相关论文
共 50 条
  • [1] Monotone finite volume schemes for diffusion equations on polygonal meshes
    Yuan, Guangwei
    Sheng, Zhiqiang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (12) : 6288 - 6312
  • [2] A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes
    Lipnikov, K.
    Svyatskiy, D.
    Vassilevski, Y.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (11) : 4017 - 4032
  • [3] Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes
    Le Potier, C
    [J]. COMPTES RENDUS MATHEMATIQUE, 2005, 341 (12) : 787 - 792
  • [4] Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes
    Lipnikov, K.
    Svyatskiy, D.
    Vassilevski, Y.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (03) : 703 - 716
  • [5] MONOTONE FINITE VOLUME SCHEMES OF NONEQUILIBRIUM RADIATION DIFFUSION EQUATIONS ON DISTORTED MESHES
    Sheng, Zhiqiang
    Yue, Jingyan
    Yuan, Guangwei
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04): : 2915 - 2934
  • [6] An improved monotone finite volume scheme for diffusion equation on polygonal meshes
    Sheng, Zhiqiang
    Yuan, Guangwei
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) : 3739 - 3754
  • [7] Composite finite volume schemes for the diffusion equation on unstructured meshes
    Blanc, Xavier
    Hoch, Philippe
    Lasuen, Clement
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 156 : 207 - 217
  • [8] A monotone combination scheme of diffusion equations on polygonal meshes
    Zhao, Fei
    Sheng, Zhiqiang
    Yuan, Guangwei
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (05):
  • [9] Finite volume box schemes on triangular meshes
    Courbet, B
    Croisille, JP
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (05): : 631 - 649
  • [10] Monotone Finite Volume Schemes for Diffusion Equation with Imperfect Interface on Distorted Meshes
    Fujun Cao
    Zhiqiang Sheng
    Guangwei Yuan
    [J]. Journal of Scientific Computing, 2018, 76 : 1055 - 1077