Impact of time-delayed feedback on spatiotemporal dynamics in the Lugiato-Lefever model

被引:14
|
作者
Panajotov, K. [1 ,8 ]
Puzyrev, D. [2 ]
Vladimirov, A. G. [3 ,4 ]
Gurevich, S. V. [5 ,6 ]
Tlidi, M. [7 ]
机构
[1] VUB, B Phot, Dept Appl Phys & Photon, Pl Laan 2, B-1050 Brussels, Belgium
[2] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[3] Weierstrass Inst, Mohrenstr 39, D-10117 Berlin, Germany
[4] Lobachevsky Univ Nizhny Novgorod, Nizhnii Novgorod, Russia
[5] Univ Munster, Inst Theoret Phys, Wilhelm Klemm Str 9, D-48149 Munster, Germany
[6] Univ Munster, Ctr Nonlinear Sci CeNoS, Corrensstr 2, D-48149 Munster, Germany
[7] ULB, Fac Sci, Code Postal 231,Campus Plaine, B-1050 Brussels, Belgium
[8] Inst Solid State Phys, 72 Tzarigradsko Chaussee Blvd, BU-1784 Sofia, Bulgaria
基金
俄罗斯科学基金会;
关键词
CAVITY SOLITONS; LOCALIZED STRUCTURES; PATTERNS;
D O I
10.1103/PhysRevA.93.043835
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the impact of delayed optical feedback (OF) on the spatiotemporal dynamics of the Lugiato-Lefever model. First, we carry out linear stability analysis and reveal the role of the OF strength and phase on the shape of the bistable curve as well as on Turing, Andronov-Hopf, and traveling-wave instability regions. Further, we demonstrate how the OF impacts the spatial dynamics by shifting the regions with different spatial eigenvalue spectra. In addition, we reveal a clustering behavior of cavity solitons as a function of the OF strength at fixed OF phase. Depending on the feedback parameters, OF can also induce a drift bifurcation of a stationary cavity soliton, as well as an Andronov-Hopf bifurcation of a drifting soliton. We present an analytical expression for the threshold of the drift bifurcation and show that above a certain value of the OF strength the system enters a region of spatiotemporal chaos.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Eckhaus instability in the Lugiato-Lefever model
    Nicolas Périnet
    Nicolas Verschueren
    Saliya Coulibaly
    The European Physical Journal D, 2017, 71
  • [2] Eckhaus instability in the Lugiato-Lefever model
    Perinet, Nicolas
    Verschueren, Nicolas
    Coulibaly, Saliya
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (09):
  • [3] Multi-resonant Lugiato-Lefever model
    Conforti, Matteo
    Biancalana, Fabio
    OPTICS LETTERS, 2017, 42 (18) : 3666 - 3669
  • [4] Dynamics of solitons in Lugiato-Lefever cavities with fractional diffraction
    He, Shangling
    Malomed, Boris A.
    Mihalache, Dumitru
    Peng, Xi
    He, Yingji
    Deng, Dongmei
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [5] Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model
    Panajotov, Krassimir
    Clerc, Marcel G.
    Tlidi, Mustapha
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (07):
  • [6] Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model
    Krassimir Panajotov
    Marcel G. Clerc
    Mustapha Tlidi
    The European Physical Journal D, 2017, 71
  • [7] Nonlinear Subharmonic Dynamics of Spectrally Stable Lugiato-Lefever Periodic Waves
    Haragus, Mariana
    Johnson, Mathew A.
    Perkins, Wesley R.
    de Rijk, Bjoern
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (10)
  • [8] Characterizing the dynamics of cavity solitons and frequency combs in the Lugiato-Lefever equation.
    Parra-Rivas, P.
    Gomila, D.
    Gelens, L.
    NONLINEAR OPTICS AND ITS APPLICATIONS IV, 2016, 9894
  • [9] Nonlinear modulational dynamics of spectrally stable Lugiato-Lefever periodic waves
    Haragus, Mariana
    Johnson, Mathew A.
    Perkins, Wesley R.
    de Rijk, Bjoern
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2023, 40 (04): : 769 - 802
  • [10] Localized structures and spatiotemporal chaos: comparison between the driven damped sine-Gordon and the Lugiato-Lefever model
    Michel A. Ferré
    Marcel G. Clerc
    Saliya Coulibally
    René G. Rojas
    Mustapha Tlidi
    The European Physical Journal D, 2017, 71