Impact of time-delayed feedback on spatiotemporal dynamics in the Lugiato-Lefever model

被引:14
|
作者
Panajotov, K. [1 ,8 ]
Puzyrev, D. [2 ]
Vladimirov, A. G. [3 ,4 ]
Gurevich, S. V. [5 ,6 ]
Tlidi, M. [7 ]
机构
[1] VUB, B Phot, Dept Appl Phys & Photon, Pl Laan 2, B-1050 Brussels, Belgium
[2] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[3] Weierstrass Inst, Mohrenstr 39, D-10117 Berlin, Germany
[4] Lobachevsky Univ Nizhny Novgorod, Nizhnii Novgorod, Russia
[5] Univ Munster, Inst Theoret Phys, Wilhelm Klemm Str 9, D-48149 Munster, Germany
[6] Univ Munster, Ctr Nonlinear Sci CeNoS, Corrensstr 2, D-48149 Munster, Germany
[7] ULB, Fac Sci, Code Postal 231,Campus Plaine, B-1050 Brussels, Belgium
[8] Inst Solid State Phys, 72 Tzarigradsko Chaussee Blvd, BU-1784 Sofia, Bulgaria
基金
俄罗斯科学基金会;
关键词
CAVITY SOLITONS; LOCALIZED STRUCTURES; PATTERNS;
D O I
10.1103/PhysRevA.93.043835
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the impact of delayed optical feedback (OF) on the spatiotemporal dynamics of the Lugiato-Lefever model. First, we carry out linear stability analysis and reveal the role of the OF strength and phase on the shape of the bistable curve as well as on Turing, Andronov-Hopf, and traveling-wave instability regions. Further, we demonstrate how the OF impacts the spatial dynamics by shifting the regions with different spatial eigenvalue spectra. In addition, we reveal a clustering behavior of cavity solitons as a function of the OF strength at fixed OF phase. Depending on the feedback parameters, OF can also induce a drift bifurcation of a stationary cavity soliton, as well as an Andronov-Hopf bifurcation of a drifting soliton. We present an analytical expression for the threshold of the drift bifurcation and show that above a certain value of the OF strength the system enters a region of spatiotemporal chaos.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Dynamics of a colloidal particle driven by continuous time-delayed feedback
    Bell-Davies, Miranda C. R.
    Curran, Arran
    Liu, Yanyan
    Dullens, Roel P. A.
    PHYSICAL REVIEW E, 2023, 107 (06)
  • [32] Spatiotemporal patterns emerging from a spatially localized time-delayed feedback scheme
    Czak, Jason
    Pleimling, Michel
    PHYSICAL REVIEW E, 2021, 104 (06)
  • [33] Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model
    Coen, Stephane
    Randle, Hamish G.
    Sylvestre, Thibaut
    Erkintalo, Miro
    OPTICS LETTERS, 2013, 38 (01) : 37 - 39
  • [35] Rich dynamics of a time-delayed food chain model
    Maiti, Alakes
    Samanta, G. P.
    JOURNAL OF BIOLOGICAL SYSTEMS, 2006, 14 (03) : 387 - 412
  • [36] BIFURCATION ANALYSIS IN A GENERALIZED FRICTION MODEL WITH TIME-DELAYED FEEDBACK
    Chuang Xu
    Junjie Wei
    Annals of Applied Mathematics, 2014, (02) : 199 - 215
  • [37] BIFURCATION ANALYSIS IN A GENERALIZED FRICTION MODEL WITH TIME-DELAYED FEEDBACK
    Chuang Xu
    Junjie Wei
    Annals of Differential Equations, 2014, 30 (02) : 199 - 215
  • [38] Global dynamics of a time-delayed echinococcosis transmission model
    Junli Liu
    Luju Liu
    Xiaomei Feng
    Jinqian Feng
    Advances in Difference Equations, 2015
  • [39] Melnikov's analysis of time-delayed feedback control in chaotic dynamics
    Cai, CH
    Xu, ZY
    Xu, WB
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2002, 49 (12): : 1724 - 1728
  • [40] Dynamics of a Time-Delayed Lyme Disease Model with Seasonality
    Wang, Xiunan
    Zhao, Xiao-Qiang
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (02): : 853 - 881