Impact of time-delayed feedback on spatiotemporal dynamics in the Lugiato-Lefever model

被引:14
|
作者
Panajotov, K. [1 ,8 ]
Puzyrev, D. [2 ]
Vladimirov, A. G. [3 ,4 ]
Gurevich, S. V. [5 ,6 ]
Tlidi, M. [7 ]
机构
[1] VUB, B Phot, Dept Appl Phys & Photon, Pl Laan 2, B-1050 Brussels, Belgium
[2] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[3] Weierstrass Inst, Mohrenstr 39, D-10117 Berlin, Germany
[4] Lobachevsky Univ Nizhny Novgorod, Nizhnii Novgorod, Russia
[5] Univ Munster, Inst Theoret Phys, Wilhelm Klemm Str 9, D-48149 Munster, Germany
[6] Univ Munster, Ctr Nonlinear Sci CeNoS, Corrensstr 2, D-48149 Munster, Germany
[7] ULB, Fac Sci, Code Postal 231,Campus Plaine, B-1050 Brussels, Belgium
[8] Inst Solid State Phys, 72 Tzarigradsko Chaussee Blvd, BU-1784 Sofia, Bulgaria
基金
俄罗斯科学基金会;
关键词
CAVITY SOLITONS; LOCALIZED STRUCTURES; PATTERNS;
D O I
10.1103/PhysRevA.93.043835
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the impact of delayed optical feedback (OF) on the spatiotemporal dynamics of the Lugiato-Lefever model. First, we carry out linear stability analysis and reveal the role of the OF strength and phase on the shape of the bistable curve as well as on Turing, Andronov-Hopf, and traveling-wave instability regions. Further, we demonstrate how the OF impacts the spatial dynamics by shifting the regions with different spatial eigenvalue spectra. In addition, we reveal a clustering behavior of cavity solitons as a function of the OF strength at fixed OF phase. Depending on the feedback parameters, OF can also induce a drift bifurcation of a stationary cavity soliton, as well as an Andronov-Hopf bifurcation of a drifting soliton. We present an analytical expression for the threshold of the drift bifurcation and show that above a certain value of the OF strength the system enters a region of spatiotemporal chaos.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Threshold dynamics in a time-delayed epidemic model with dispersal
    White, Michael C.
    Zhao, Xiao-Qiang
    MATHEMATICAL BIOSCIENCES, 2009, 218 (02) : 121 - 129
  • [42] Chaos control in economical model by time-delayed feedback method
    Holyst, JA
    Urbanowicz, K
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 287 (3-4) : 587 - 598
  • [43] Dynamics of vaccination in a time-delayed epidemic model with awareness
    Agaba, G. O.
    Kyrychko, Y. N.
    Blyuss, K. B.
    MATHEMATICAL BIOSCIENCES, 2017, 294 : 92 - 99
  • [44] Optoelectronic oscillators with time-delayed feedback
    Chembo, Yanne K.
    Brunner, Daniel
    Jacquot, Maxime
    Larger, Laurent
    REVIEWS OF MODERN PHYSICS, 2019, 91 (03)
  • [45] Time-delayed feedback control of nonlinear dynamics in a giant magnetostrictive actuator
    Gao Hong
    Deng Zhongmin
    Zhao Yanlin
    Yan Hongbo
    Zhang Xinjie
    Meng Lingzi
    Luo Qi
    Nonlinear Dynamics, 2022, 108 : 1371 - 1394
  • [46] Dynamics of Simple Balancing Models with Time-Delayed Switching Feedback Control
    Simpson, D. J. W.
    Kuske, R.
    Li, Y. -X.
    JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (02) : 135 - 167
  • [47] Multistability and complex dynamics in coupled semiconductor lasers with time-delayed feedback
    Balakin, M.
    Kochkurov, L.
    Melnikov, L.
    Astakhov, V.
    SARATOV FALL MEETING 2015 THIRD INTERNATIONAL SYMPOSIUM ON OPTICS AND BIOPHOTONICS; AND SEVENTH FINNISH-RUSSIAN PHOTONICS AND LASER SYMPOSIUM (PALS), 2016, 9917
  • [48] Dynamics of Simple Balancing Models with Time-Delayed Switching Feedback Control
    D. J. W. Simpson
    R. Kuske
    Y.-X. Li
    Journal of Nonlinear Science, 2012, 22 : 135 - 167
  • [49] Global dynamics of a time-delayed echinococcosis transmission model
    Liu, Junli
    Liu, Luju
    Feng, Xiaomei
    Feng, Jinqian
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [50] Brownian motor with time-delayed feedback
    Wu, Dan
    Zhu, Shiqun
    PHYSICAL REVIEW E, 2006, 73 (05):