Eckhaus instability in the Lugiato-Lefever model

被引:15
|
作者
Perinet, Nicolas [1 ]
Verschueren, Nicolas [2 ]
Coulibaly, Saliya [3 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, 487-3 Casilla, Santiago, Chile
[2] Univ Bristol, Dept Engn Math, Queens Bldg,Univ Walk, Bristol BS8 1TR, Avon, England
[3] Univ Sci & Technol Lille, CNRS UMR 8523, Lab Phys Lasers Atomes & Mol, F-59655 Villeneuve Dascq, France
来源
EUROPEAN PHYSICAL JOURNAL D | 2017年 / 71卷 / 09期
关键词
OPTICAL BISTABILITY; PATTERN SELECTION; RESONATORS; STABILITY; DYNAMICS; CAVITY;
D O I
10.1140/epjd/e2017-80078-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study theoretically the primary and secondary instabilities undergone by the stationary periodic patterns in the Lugiato-Lefever equation in the focusing regime. Direct numerical simulations in a one-dimensional periodic domain show discrete changes of the periodicity of the patterns emerging from unstable homogeneous steady states. Through continuation methods of the steady states we reveal that the system exhibits a set of wave instability branches. The organisation of these branches suggests the existence of an Eckhaus scenario, which is characterized in detail by means of the derivation of their amplitude equation in the weakly nonlinear regime. The continuation in the highly nonlinear regime shows that the furthest branches become unstable through a Hopf bifurcation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Eckhaus instability in the Lugiato-Lefever model
    Nicolas Périnet
    Nicolas Verschueren
    Saliya Coulibaly
    The European Physical Journal D, 2017, 71
  • [2] Theory and applications of the Lugiato-Lefever Equation
    Chembo, Yanne K.
    Gomila, Damia
    Tlidi, Mustapha
    Menyuk, Curtis R.
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (11):
  • [3] Multi-resonant Lugiato-Lefever model
    Conforti, Matteo
    Biancalana, Fabio
    OPTICS LETTERS, 2017, 42 (18) : 3666 - 3669
  • [4] Periodic waves of the Lugiato-Lefever equation at the onset of Turing instability
    Delcey, Lucie
    Haragus, Mariana
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2117):
  • [5] PINNING IN THE EXTENDED LUGIATO-LEFEVER EQUATION
    Bengel, Lukas
    Pelinovsky, Dmitry
    Reichel, Wolfgang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) : 3679 - 3702
  • [6] A bifurcation analysis for the Lugiato-Lefever equation
    Cyril Godey
    The European Physical Journal D, 2017, 71
  • [7] A bifurcation analysis for the Lugiato-Lefever equation
    Godey, Cyril
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (05):
  • [8] Theory and applications of the Lugiato-Lefever Equation
    Yanne K. Chembo
    Damià Gomila
    Mustapha Tlidi
    Curtis R. Menyuk
    The European Physical Journal D, 2017, 71
  • [9] STABILITY OF A STATIONARY SOLUTION FOR THE LUGIATO-LEFEVER EQUATION
    Miyaji, Tomoyuki
    Ohnishi, Isamu
    Tsutsumi, Yoshio
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) : 651 - 663
  • [10] INSTABILITIES OF PERIODIC WAVES FOR THE LUGIATO-LEFEVER EQUATION
    Delcey, Lucie
    Haragus, Mariana
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 63 (04): : 377 - 399