Eckhaus instability in the Lugiato-Lefever model

被引:15
|
作者
Perinet, Nicolas [1 ]
Verschueren, Nicolas [2 ]
Coulibaly, Saliya [3 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, 487-3 Casilla, Santiago, Chile
[2] Univ Bristol, Dept Engn Math, Queens Bldg,Univ Walk, Bristol BS8 1TR, Avon, England
[3] Univ Sci & Technol Lille, CNRS UMR 8523, Lab Phys Lasers Atomes & Mol, F-59655 Villeneuve Dascq, France
来源
EUROPEAN PHYSICAL JOURNAL D | 2017年 / 71卷 / 09期
关键词
OPTICAL BISTABILITY; PATTERN SELECTION; RESONATORS; STABILITY; DYNAMICS; CAVITY;
D O I
10.1140/epjd/e2017-80078-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study theoretically the primary and secondary instabilities undergone by the stationary periodic patterns in the Lugiato-Lefever equation in the focusing regime. Direct numerical simulations in a one-dimensional periodic domain show discrete changes of the periodicity of the patterns emerging from unstable homogeneous steady states. Through continuation methods of the steady states we reveal that the system exhibits a set of wave instability branches. The organisation of these branches suggests the existence of an Eckhaus scenario, which is characterized in detail by means of the derivation of their amplitude equation in the weakly nonlinear regime. The continuation in the highly nonlinear regime shows that the furthest branches become unstable through a Hopf bifurcation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation
    Parra-Rivas, Pedro
    Gomila, Damia
    Colet, Pere
    Gelens, Lendert
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (07):
  • [42] Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation
    Cardoso, Wesley B.
    Salasnich, Luca
    Malomed, Boris A.
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (05):
  • [43] Stability and dynamics of microring combs: elliptic function solutions of the Lugiato-Lefever equation
    Sun, Chang
    Askham, Travis
    Kutz, J. Nathan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (06) : 1341 - 1353
  • [44] Global continua of solutions to the Lugiato-Lefever model for frequency combs obtained by two-mode pumping
    Gasmi, Elias
    Jahnke, Tobias
    Kirn, Michael
    Reichel, Wolfgang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [45] Localized structures and spatiotemporal chaos: comparison between the driven damped sine-Gordon and the Lugiato-Lefever model
    Michel A. Ferré
    Marcel G. Clerc
    Saliya Coulibally
    René G. Rojas
    Mustapha Tlidi
    The European Physical Journal D, 2017, 71
  • [46] Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes
    Godey, Cyril
    Balakireva, Irina V.
    Coillet, Aurelien
    Chembo, Yanne K.
    PHYSICAL REVIEW A, 2014, 89 (06):
  • [47] Existence of global solutions and global attractor for the third order Lugiato-Lefever equation on T
    Miyaji, Tomoyuki
    Tsutsumi, Yoshio
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (07): : 1707 - 1725
  • [48] The linear Lugiato-Lefever equation with forcing and nonzero periodic or nonperiodic boundary conditions
    Wimmergren, Joseph
    Mantzavinos, Dionyssios
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (05): : 783 - 808
  • [49] Linear modulational and subharmonic dynamics of spectrally stable Lugiato-Lefever periodic waves
    Haragus, Mariana
    Johnson, Mathew A.
    Perkins, Wesley R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 315 - 354
  • [50] Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation
    Wesley B. Cardoso
    Luca Salasnich
    Boris A. Malomed
    The European Physical Journal D, 2017, 71