Spatially resolved spectral unmixing using convolutional neural networks

被引:3
|
作者
Anastasiadis, Johannes [1 ]
Leon, Fernando Puente [1 ]
机构
[1] Karlsruher Inst Technol, Inst Ind Informat Tech, Karlsruhe, Germany
关键词
Hyperspectral image; spectral unmixing; convolutional neural networks; MATERIAL ABUNDANCES; FOOD;
D O I
10.1515/teme-2019-0062
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper proposes a model-free approach for spectral unmixing based on a convolutional neural network. It is evaluated using sample data sets and compared with methods based on the linear mixing model. Furthermore, methods to ensure physical plausibility of the estimated abundances are presented. This approach involves output layers that enforce non-negativity and the sum-to-one constraint.
引用
收藏
页码:S122 / S126
页数:5
相关论文
共 50 条
  • [31] Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks
    Crawford, Eric
    Pineau, Joelle
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3412 - 3420
  • [32] Convolutional Autoencoder for Spectral Spatial Hyperspectral Unmixing
    Palsson, Burkni
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 535 - 549
  • [33] Detection of impurities in wheat using terahertz spectral imaging and convolutional neural networks
    Shen, Yin
    Yin, Yanxin
    Li, Bin
    Zhao, Chunjiang
    Li, Guanglin
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 181
  • [34] SEGMENTING HYPERSPECTRAL IMAGES USING SPECTRAL CONVOLUTIONAL NEURAL NETWORKS IN THE PRESENCE OF NOISE
    Nalepa, Jakub
    Stanek, Marek
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 870 - 873
  • [35] Resolving phytoplankton pigments from spectral images using convolutional neural networks
    Salmi, Pauliina
    Poeloenen, Ilkka
    Beckmann, Daniel Atton
    Calderini, Marco L.
    May, Linda
    Olszewska, Justyna
    Perozzi, Laura
    Paakkonen, Salli
    Taipale, Sami
    Hunter, Peter
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2024, 22 (01): : 1 - 13
  • [36] Spatially resolved spectral interferometry
    Bowlan, Pamela
    Gabolde, Pablo
    Shreenath, Aparna
    Akturk, Selcuk
    Trebino, Rick
    ULTRAFAST PHENOMENA XV, 2007, 88 : 196 - +
  • [37] Convolutional neural networks in skin cancer detection using spatial and spectral domain
    Polonen, Ilkka
    Rahkonen, Samuli
    Annala, Leevi
    Neittaanmaki, Noora
    PHOTONICS IN DERMATOLOGY AND PLASTIC SURGERY 2019, 2019, 10851
  • [38] Human locomotion activity recognition using spectral analysis and convolutional neural networks
    Amer, Ahmad
    Ji, Ze
    INTERNATIONAL JOURNAL OF MANUFACTURING RESEARCH, 2021, 16 (04) : 350 - 364
  • [39] A pansharpening scheme using spectral graph wavelet transforms and convolutional neural networks
    Saxena, Nidhi
    Balasubramanian, Raman
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (08) : 2898 - 2919
  • [40] HYPERSPECTRAL IMAGE CLASSIFICATION USING SPECTRAL-SPATIAL CONVOLUTIONAL NEURAL NETWORKS
    Nalepa, Jakub
    Tulczyjew, Lukasz
    Myller, Michal
    Kawulok, Michal
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 866 - 869