SEGMENTING HYPERSPECTRAL IMAGES USING SPECTRAL CONVOLUTIONAL NEURAL NETWORKS IN THE PRESENCE OF NOISE

被引:3
|
作者
Nalepa, Jakub [1 ,2 ]
Stanek, Marek [1 ]
机构
[1] Silesian Tech Univ, Akad 16, PL-44100 Gliwice, Poland
[2] KP Labs, Konarskiego 18C, PL-44100 Gliwice, Poland
关键词
Hyperspectral imaging; noise; deep learning; classification; segmentation;
D O I
10.1109/IGARSS39084.2020.9324198
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectrometers capture detailed information about the scanned objects, but they are susceptible to the presence of various kinds of noise. In this work, we quantify the impact of different levels of Gaussian and impulsive noise on the abilities of a spectral convolutional neural network applied for hyperspectral image segmentation. Our experiments showed that the noise may degrade the classification accuracy of the spectral convolutional nets, and can be a serious obstacle in deploying such models on-board a satellite, where the presence of noise is inevitable.
引用
收藏
页码:870 / 873
页数:4
相关论文
共 50 条
  • [1] Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    Yue, Jun
    Zhao, Wenzhi
    Mao, Shanjun
    Liu, Hui
    [J]. REMOTE SENSING LETTERS, 2015, 6 (06) : 468 - 477
  • [2] Segmentation of hyperspectral images using quantized convolutional neural networks
    Lorenzo, Pablo Ribalta
    Marcinkiewicz, Michal
    Nalepa, Jakub
    [J]. 2018 21ST EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2018), 2018, : 260 - 267
  • [3] CLASSIFICATION OF HYPERSPECTRAL COLON CANCER IMAGES USING CONVOLUTIONAL NEURAL NETWORKS
    Mobilia, Sean
    Sirkeci-Mergen, Birsen
    Deal, Joshua
    Rich, Thomas C.
    Leavesley, Silas J.
    [J]. 2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 232 - 236
  • [4] HyperConv: spatio-spectral classification of hyperspectral images with deep convolutional neural networks
    Ko, Seyoon
    Jun, Goo
    Won, Joong-Ho
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (05) : 859 - 872
  • [5] Use of convolutional neural networks for segmenting images of roads from satellite
    Seliverstov, Ya A.
    Seliverstov, S. A.
    Naryshkin, R. S.
    Kripak, M. N.
    [J]. INTERNATIONAL CONFERENCE ON MODERN TRENDS IN MANUFACTURING TECHNOLOGIES AND EQUIPMENT (ICMTMTE) 2020, 2020, 971
  • [6] Convolutional neural network for spectral–spatial classification of hyperspectral images
    Hongmin Gao
    Yao Yang
    Chenming Li
    Xiaoke Zhang
    Jia Zhao
    Dan Yao
    [J]. Neural Computing and Applications, 2019, 31 : 8997 - 9012
  • [7] HYPERSPECTRAL IMAGE CLASSIFICATION USING SPECTRAL-SPATIAL CONVOLUTIONAL NEURAL NETWORKS
    Nalepa, Jakub
    Tulczyjew, Lukasz
    Myller, Michal
    Kawulok, Michal
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 866 - 869
  • [8] Pixel-Based Classification of Hyperspectral Images Using Convolutional Neural Networks
    Syed Aamer Hussain
    Ali Tahir
    Junaid Aziz Khan
    Ahmad Salman
    [J]. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2019, 87 : 33 - 45
  • [9] Pixel-Based Classification of Hyperspectral Images Using Convolutional Neural Networks
    Hussain, Syed Aamer
    Tahir, Ali
    Khan, Junaid Aziz
    Salman, Ahmad
    [J]. PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2019, 87 (1-2): : 33 - 45
  • [10] Spectral Classification of a Set of Hyperspectral Images using the Convolutional Neural Network, in a Single Training
    Zbakh, Abdelali
    Mdaghri, Zoubida Alaoui
    Benyoussef, Abdelillah
    El Kenz, Abdellah
    El Yadari, Mourad
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (06) : 245 - 250