Spatially resolved spectral unmixing using convolutional neural networks

被引:3
|
作者
Anastasiadis, Johannes [1 ]
Leon, Fernando Puente [1 ]
机构
[1] Karlsruher Inst Technol, Inst Ind Informat Tech, Karlsruhe, Germany
关键词
Hyperspectral image; spectral unmixing; convolutional neural networks; MATERIAL ABUNDANCES; FOOD;
D O I
10.1515/teme-2019-0062
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper proposes a model-free approach for spectral unmixing based on a convolutional neural network. It is evaluated using sample data sets and compared with methods based on the linear mixing model. Furthermore, methods to ensure physical plausibility of the estimated abundances are presented. This approach involves output layers that enforce non-negativity and the sum-to-one constraint.
引用
收藏
页码:S122 / S126
页数:5
相关论文
共 50 条
  • [41] One Dimensional Convolutional Neural Networks for Spectral Analysis
    Primrose, Michael S.
    Giblin, Jay
    Smith, Christian
    Anguita, Martin R.
    Weedon, Gabriel H.
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXVIII, 2022, 12094
  • [42] Optimizing Fully Spectral Convolutional Neural Networks on FPGA
    Liu, Shuanglong
    Luk, Wayne
    2020 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (ICFPT 2020), 2020, : 39 - 47
  • [43] Hybrid of DiffStride and Spectral Pooling in Convolutional Neural Networks
    Rafif, Sulthan
    Pratama, Mochamad Arfan Ravy Wahyu
    Azhar, Mohammad Faris
    Ibad, Ahmad Mustafidul
    Muflikhah, Lailil
    Yudistira, Novanto
    arXiv,
  • [44] Hybrid of DiffStride and Spectral Pooling in Convolutional Neural Networks
    Rafif, Sulthan
    Azhar, Mohammad Faris
    Wahyu Pratama, Mochamad Arfan Ravy
    Ibad, Ahmad Mustafidul
    Yudistira, Novanto
    Muflikhah, Lailil
    ACM International Conference Proceeding Series, 2023, : 210 - 216
  • [45] Application of convolutional neural networks for stellar spectral classification
    Sharma, Kaushal
    Kembhavi, Ajit
    Kembhavi, Aniruddha
    Sivarani, T.
    Abraham, Sheelu
    Vaghmare, Kaustubh
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 491 (02) : 2280 - 2300
  • [46] Quantitative Analysis of Petroleum Hydrocarbon Contaminated Soils using Spectroscopy, Spectral Unmixing and Deep Neural Networks
    Ahmed, Asmau M.
    Duran, Olga
    Zweiri, Yahya
    Smith, Mike
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIV, 2018, 10789
  • [47] Metamodel-Based Reliability Analysis in Spatially Variable Soils Using Convolutional Neural Networks
    Wang, Ze Zhou
    Xiao, Changlin
    Goh, Siang Huat
    Deng, Min-Xuan
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2021, 147 (03)
  • [48] A Multibranch Convolutional Neural Network for Hyperspectral Unmixing
    Tulczyjew, Lukasz
    Kawulok, Michal
    Longepe, Nicolas
    Le Saux, Bertrand
    Nalepa, Jakub
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [49] Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
    Ning, Guanghan
    Zhang, Zhi
    Huang, Chen
    Ren, Xiaobo
    Wang, Haohong
    Cai, Canhui
    He, Zhihai
    2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017, : 2311 - 2314
  • [50] Classification of spatially enriched pixel time series with convolutional neural networks
    Chelali, Mohamed
    Kurtz, Camille
    Puissant, Anne
    Vincent, Nicole
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5310 - 5317