Hierarchy of higher-order Floquet topological phases in three dimensions

被引:51
|
作者
Nag, Tanay [1 ,2 ]
Juricic, Vladimir [3 ,4 ,5 ]
Roy, Bitan [6 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany
[3] KTH Royal Inst Technol, Nordita, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[4] Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[5] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110, Valparaiso, Chile
[6] Lehigh Univ, Dept Phys, Bldg 16, Bethlehem, PA 18015 USA
基金
瑞典研究理事会;
关键词
INSULATORS;
D O I
10.1103/PhysRevB.103.115308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Following a general protocol of periodically driving static first-order topological phases (supporting surface states) with suitable discrete symmetry breaking Wilson-Dirac masses, here we construct a hierarchy of higher-order Floquet topological phases in three dimensions. In particular, we demonstrate realizations of both second-order and third-order Floquet topological states, respectively supporting dynamic hinge and corner modes at zero quasienergy, by periodically driving their static first-order parent states with one and two discrete symmetry breaking Wilson-Dirac mass(es). While the static surface states are characterized by codimension d(c) = 1, the resulting dynamic hinge (corner) modes, protected by antiunitary spectral or particle-hole symmetries, live on the boundaries with d(c) = 2 (3). We exemplify these outcomes for three-dimensional topological insulators and Dirac semimetals, with the latter ones following an arbitrary spin-j representation.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Higher-order topological phases in bilayer phononic crystals and topological bound states in the continuum
    Liu, Xiao-Yu
    Liu, Yang
    Xiong, Zhan
    Wang, Hai-Xiao
    Jiang, Jian-Hua
    PHYSICAL REVIEW B, 2024, 109 (20)
  • [42] Higher-order topological insulators, topological pumps and the quantum Hall effect in high dimensions
    Petrides, Ioannis
    Zilberberg, Oded
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [43] Higher-order topological phases hidden in quantum spin Hall insulators
    Wang, Baokai
    Hung, Yi-Chun
    Zhou, Xiaoting
    Bansil, Arun
    Lin, Hsin
    PHYSICAL REVIEW B, 2023, 108 (24)
  • [44] Higher-order topological phases of magnons protected by magnetic crystalline symmetries
    Li, Yun-Mei
    Wu, Ya-Jie
    Luo, Xi-Wang
    Huang, Yongwei
    Chang, Kai
    PHYSICAL REVIEW B, 2022, 106 (05)
  • [45] Higher-Order Bulk-Boundary Correspondence for Topological Crystalline Phases
    Trifunovic, Luka
    Brouwer, Piet W.
    PHYSICAL REVIEW X, 2019, 9 (01)
  • [46] Superconductors with anomalous Floquet higher-order topology
    Vu, DinhDuy
    Zhang, Rui-Xing
    Yang, Zhi-Cheng
    Das Sarma, S.
    PHYSICAL REVIEW B, 2021, 104 (14)
  • [47] Floquet higher-order Weyl and nexus semimetals
    Zhu, Weiwei
    Umer, Muhammad
    Gong, Jiangbin
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [48] Higher-order topological insulators
    Schindler, Frank
    Cook, Ashley M.
    Vergniory, Maia G.
    Wang, Zhijun
    Parkin, Stuart S. P.
    Andrei Bernevig, B.
    Neupert, Titus
    SCIENCE ADVANCES, 2018, 4 (06):
  • [49] Non-Hermitian Floquet higher-order topological states in two-dimensional quasicrystals
    Shi, Aoqian
    Bao, Linsheng
    Peng, Peng
    Ning, Jiayun
    Wang, Zhennan
    Liu, Jianjun
    Physical Review B, 2025, 111 (09)
  • [50] Higher-order topological phases in crystalline and non-crystalline systems: a review
    Yang, Yan-Bin
    Wang, Jiong-Hao
    Li, Kai
    Xu, Yong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (28)