Hierarchy of higher-order Floquet topological phases in three dimensions

被引:51
|
作者
Nag, Tanay [1 ,2 ]
Juricic, Vladimir [3 ,4 ,5 ]
Roy, Bitan [6 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany
[3] KTH Royal Inst Technol, Nordita, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[4] Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[5] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110, Valparaiso, Chile
[6] Lehigh Univ, Dept Phys, Bldg 16, Bethlehem, PA 18015 USA
基金
瑞典研究理事会;
关键词
INSULATORS;
D O I
10.1103/PhysRevB.103.115308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Following a general protocol of periodically driving static first-order topological phases (supporting surface states) with suitable discrete symmetry breaking Wilson-Dirac masses, here we construct a hierarchy of higher-order Floquet topological phases in three dimensions. In particular, we demonstrate realizations of both second-order and third-order Floquet topological states, respectively supporting dynamic hinge and corner modes at zero quasienergy, by periodically driving their static first-order parent states with one and two discrete symmetry breaking Wilson-Dirac mass(es). While the static surface states are characterized by codimension d(c) = 1, the resulting dynamic hinge (corner) modes, protected by antiunitary spectral or particle-hole symmetries, live on the boundaries with d(c) = 2 (3). We exemplify these outcomes for three-dimensional topological insulators and Dirac semimetals, with the latter ones following an arbitrary spin-j representation.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Polarization-Locked Floquet Higher-Order Topological Insulators in Synthetic Dimension
    Liu, Zhuoxiong
    Liu, Weiwei
    Zheng, Lingzhi
    Ren, Shuaifei
    Su, Xiaolong
    Ding, Yufan
    Wang, Bing
    Lu, Peixiang
    LASER & PHOTONICS REVIEWS, 2025,
  • [32] Interaction-enabled fractonic higher-order topological phases
    May-Mann, Julian
    You, Yizhi
    Hughes, Taylor L.
    Bi, Zhen
    PHYSICAL REVIEW B, 2022, 105 (24)
  • [33] Chiral-Symmetric Higher-Order Topological Phases of Matter
    Benalcazar, Wladimir A.
    Cerjan, Alexander
    PHYSICAL REVIEW LETTERS, 2022, 128 (12)
  • [34] Quadrupole higher-order topological phases in static mechanical metamaterials
    Long, Jiaxin
    Wang, Aoxi
    Zhou, Yuan
    Chen, Chang Qing
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 263
  • [35] Fractonic higher-order topological phases in open quantum systems
    Zhang, Jian-Hao
    Ding, Ke
    Yang, Shuo
    Bi, Zhen
    PHYSICAL REVIEW B, 2023, 108 (15)
  • [36] Classification and construction of interacting fractonic higher-order topological phases
    Zhang J.-H.
    Cheng M.
    Bi Z.
    Physical Review B, 2023, 108 (04)
  • [37] Tailoring higher-order topological phases via orbital hybridization
    Mazanov, Maxim
    Gorlach, Maxim A.
    PHYSICAL REVIEW B, 2022, 105 (20)
  • [38] Topological classification of higher-order topological phases with nested band inversion surfaces
    Lei, Zhoutao
    Deng, Yuangang
    Li, Linhu
    PHYSICAL REVIEW B, 2022, 106 (24)
  • [39] Entanglement entropy of gapped phases and topological order in three dimensions
    Grover, Tarun
    Turner, Ari M.
    Vishwanath, Ashvin
    PHYSICAL REVIEW B, 2011, 84 (19)
  • [40] Simulation of higher-order topological phases and related topological phase transitions in a superconducting qubit
    Niu, Jingjing
    Yan, Tongxing
    Zhou, Yuxuan
    Tao, Ziyu
    Li, Xiaole
    Liu, Weiyang
    Zhang, Libo
    Jia, Hao
    Liu, Song
    Yan, Zhongbo
    Chen, Yuanzhen
    Yu, Dapeng
    SCIENCE BULLETIN, 2021, 66 (12) : 1168 - 1175