Parallel High-Radix Montgomery Multipliers

被引:15
|
作者
Amberg, Philip [1 ]
Pinckney, Nathaniel [1 ]
Harris, David Money [1 ]
机构
[1] Harvey Mudd Coll, Claremont, CA 91711 USA
关键词
D O I
10.1109/ACSSC.2008.5074513
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes the algorithm and design tradeoffs for multiple hardware implementations of parallel high-radix scalable Montgomery multipliers. Hardware implementations of Montgomery multipliers require choosing a radix, shift direction, and whether to use Booth encoding. Presented are processing element designs exploring combinations of radices 2, 4, and 8, right vs. left shifting, and Booth encoding. A radix-4, left-shifting, non-Booth encoded design performs a 1024-bit modular exponentiation in 9.4 ms using 4997 LUTs and 4051 REGs and appears to maximize performance/hardware in an FPGA implementation. A Booth encoded version of the above multiplier performs a 1024-bit modular exponentiation in 13 ms using 4852 LUTs and 2887 REGs. This design may be beneficial for systems constrained by the cycle time of other elements because the design minimizes hardware usage and requires no precomputed multiples. The radix-8, right-shifting, Booth-encoded design offers no performance/hardware advantage over a comparable radix-4 design.
引用
收藏
页码:772 / 776
页数:5
相关论文
共 50 条
  • [41] High-radix iterative algorithm for powering computation
    Piñeiro, JA
    Ercegovac, MD
    Bruguera, JD
    [J]. 16TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 2003, : 204 - 211
  • [42] Optimizing the configuration of combined high-radix switches
    Juan A. Villar
    Francisco J. Andujar
    Francisco J. Alfaro
    Jose L. Sanchez
    Jose Duato
    [J]. The Journal of Supercomputing, 2015, 71 : 2614 - 2643
  • [43] Pipelining high-radix SRT division algorithms
    Upadhyay, Saurabh
    Stine, James E.
    [J]. 2007 50TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-3, 2007, : 266 - 269
  • [44] Scalable High-Radix Modular Crossbar Switches
    Cakir, Cagla
    Ho, Ron
    Lexau, Jon
    Mai, Ken
    [J]. 2016 IEEE 24TH ANNUAL SYMPOSIUM ON HIGH-PERFORMANCE INTERCONNECTS (HOTI), 2016, : 37 - 44
  • [45] Analysis of the tradeoffs for the implementation of a high-radix logarithm
    Piñeiro, JA
    Ercegovac, MD
    Bruguera, JD
    [J]. ICCD'2002: IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN: VLSI IN COMPUTERS AND PROCESSORS, PROCEEDINGS, 2002, : 132 - 137
  • [46] HCORDIC: A high-radix adaptive CORDIC algorithm
    Elguibaly, F
    Sui, NT
    Rayhan, A
    [J]. CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2000, 25 (04): : 149 - 154
  • [47] Distributed CRC Architecture for High-Radix Parallel Turbo Decoding in LTE-Advanced Systems
    Kim, Hyeji
    Choi, Injun
    Byun, Wooseok
    Lee, Jong-Yeol
    Kim, Ji-Hoon
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2015, 62 (09) : 906 - 910
  • [48] An Efficient Label Routing on High-Radix Interconnection Networks
    Lei, Fei
    Dong, Dezun
    Liao, Xiangke
    [J]. 2017 IEEE 23RD INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2017, : 596 - 603
  • [49] MODULE COMPILER FOR HIGH-RADIX CCD-PLAS
    KERKHOFF, HG
    BUTLER, JT
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 1989, 67 (05) : 797 - 807
  • [50] High-radix cordic algorithms for VLSI signal processing
    Aoki, T
    Nogi, H
    Higuchi, T
    [J]. SIPS 97 - 1997 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS: DESIGN AND IMPLEMENTATION, 1997, : 183 - 192