A cubic system with twelve small amplitude limit cycles

被引:38
|
作者
Liu, YR
Huang, WT [1 ]
机构
[1] Guilin Univ Elect Technol, Dept Comp Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Cent S Univ, Coll Math Sci & Comp Technol, Changsha 410083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2005年 / 129卷 / 02期
基金
中国国家自然科学基金;
关键词
limit cycle; focal value; singular point value; Poincard succession function;
D O I
10.1016/j.bulsci.2004.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the bifurcation of limit cycles for a cubic polynomial system is investigated. By the computation of the singular point values, we prove that the system has 12 small amplitude limit cycles. The process of the proof is algebraic and symbolic. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 50 条
  • [21] A cubic Kolmogorov system with six limit cycles
    Lloyd, NG
    Pearson, JM
    Saéz, E
    Szántó, I
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (3-4) : 445 - 455
  • [22] On the number and distribution of limit cycles in a cubic system
    Maoan, H
    Zhang, TH
    Hong, Z
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4285 - 4292
  • [23] DISTRIBUTION OF LIMIT CYCLES OF THE PLANAR CUBIC SYSTEM
    李继彬
    [J]. Science in China,SerA., 1985, Ser.A.1985 (01) : 35 - 46
  • [24] LIMIT CYCLES AND CENTERS IN A CUBIC PLANAR SYSTEM
    Cherkas, Leonid
    Romanovski, Valery G.
    Xing, Yepeng
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (12): : 4127 - 4135
  • [25] LIMIT-CYCLES IN A CUBIC SYSTEM WITH A CUSP
    XIAN, W
    KOOIJ, RE
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) : 1609 - 1622
  • [26] Amplitude control of limit cycles in Langford system
    Cui, Yan
    Liu, Suhua
    Tang, Jiashi
    Meng, Yimin
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 335 - 340
  • [27] A relation between small amplitude and big limit cycles
    Gasull, A
    Torregrosa, J
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (04) : 1277 - 1303
  • [28] The Maximum Number of Small-Amplitude Limit Cycles in Lienard-Type Systems with Cubic Restoring Terms
    Shi, Hongwei
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [29] Small Amplitude Limit Cycles and Local Bifurcation of Critical Periods for a Quartic Kolmogorov System
    He, Dongping
    Huang, Wentao
    Wang, Qinlong
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (02)
  • [30] A SYSTEM OF DEGREE FOUR WITH AN INVARIANT TRIANGLE AND AT LEAST THREE SMALL AMPLITUDE LIMIT CYCLES
    Liu, Z. H.
    Saez, E.
    Szanto, I.
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2010, (69) : 1 - 7