A cubic system with twelve small amplitude limit cycles

被引:38
|
作者
Liu, YR
Huang, WT [1 ]
机构
[1] Guilin Univ Elect Technol, Dept Comp Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Cent S Univ, Coll Math Sci & Comp Technol, Changsha 410083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2005年 / 129卷 / 02期
基金
中国国家自然科学基金;
关键词
limit cycle; focal value; singular point value; Poincard succession function;
D O I
10.1016/j.bulsci.2004.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the bifurcation of limit cycles for a cubic polynomial system is investigated. By the computation of the singular point values, we prove that the system has 12 small amplitude limit cycles. The process of the proof is algebraic and symbolic. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 50 条
  • [21] On the number and distribution of limit cycles in a cubic system
    Maoan, H
    Zhang, TH
    Hong, Z
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4285 - 4292
  • [22] LIMIT CYCLES FOR A CUBIC GENERALIZED LIENARD SYSTEM
    Zhao, Jinyuan
    Li, Jun
    Wu, Kuilin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [23] DISTRIBUTION OF LIMIT CYCLES OF THE PLANAR CUBIC SYSTEM
    李继彬
    ScienceinChina,SerA., 1985, Ser.A.1985 (01) : 35 - 46
  • [24] LIMIT-CYCLES IN A CUBIC SYSTEM WITH A CUSP
    XIAN, W
    KOOIJ, RE
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) : 1609 - 1622
  • [25] LIMIT CYCLES AND CENTERS IN A CUBIC PLANAR SYSTEM
    Cherkas, Leonid
    Romanovski, Valery G.
    Xing, Yepeng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (12): : 4127 - 4135
  • [26] Amplitude control of limit cycles in Langford system
    Cui, Yan
    Liu, Suhua
    Tang, Jiashi
    Meng, Yimin
    CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 335 - 340
  • [27] A relation between small amplitude and big limit cycles
    Gasull, A
    Torregrosa, J
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (04) : 1277 - 1303
  • [28] The Maximum Number of Small-Amplitude Limit Cycles in Lienard-Type Systems with Cubic Restoring Terms
    Shi, Hongwei
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [29] Small Amplitude Limit Cycles and Local Bifurcation of Critical Periods for a Quartic Kolmogorov System
    He, Dongping
    Huang, Wentao
    Wang, Qinlong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (02)
  • [30] A SYSTEM OF DEGREE FOUR WITH AN INVARIANT TRIANGLE AND AT LEAST THREE SMALL AMPLITUDE LIMIT CYCLES
    Liu, Z. H.
    Saez, E.
    Szanto, I.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2010, (69) : 1 - 7