A cubic system with twelve small amplitude limit cycles

被引:38
|
作者
Liu, YR
Huang, WT [1 ]
机构
[1] Guilin Univ Elect Technol, Dept Comp Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Cent S Univ, Coll Math Sci & Comp Technol, Changsha 410083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2005年 / 129卷 / 02期
基金
中国国家自然科学基金;
关键词
limit cycle; focal value; singular point value; Poincard succession function;
D O I
10.1016/j.bulsci.2004.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the bifurcation of limit cycles for a cubic polynomial system is investigated. By the computation of the singular point values, we prove that the system has 12 small amplitude limit cycles. The process of the proof is algebraic and symbolic. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 50 条
  • [31] Small Amplitude Limit Cycles and Local Bifurcation of Critical Periods for a Quartic Kolmogorov System
    Dongping He
    Wentao Huang
    Qinlong Wang
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [32] 11 SMALL LIMIT-CYCLES IN A CUBIC VECTOR FIELD
    ZOLADEK, H
    NONLINEARITY, 1995, 8 (05) : 843 - 860
  • [33] Limit cycles for a cubic Hamiltonian system with lower perturbations
    Liu, Zheng-Rong
    Li, Shao-Yong
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 1526 - 1529
  • [34] Centers and Limit Cycles of a Generalized Cubic Riccati System
    Zhou, Zhengxin
    Romanovski, Valery G.
    Yu, Jiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (02):
  • [35] A cubic polynomial system with seven limit cycles at infinity
    Zhang, Qi
    Liu, Yirong
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) : 319 - 329
  • [36] EXISTENCE CONDITIONS OF THIRTEEN LIMIT CYCLES IN A CUBIC SYSTEM
    Yang, Junmin
    Han, Maoan
    Li, Jibin
    Yu, Pei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (08): : 2569 - 2577
  • [37] The number of limit cycles of cubic Hamiltonian system with perturbation
    Wu, Cheng-qiang
    Xia, Yonghui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) : 943 - 949
  • [38] A new cubic system having eleven limit cycles
    Han, M
    Wu, YH
    Bi, P
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (04) : 675 - 686
  • [39] DISTRIBUTION OF LIMIT-CYCLES OF THE PLANAR CUBIC SYSTEM
    LI, JB
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1985, 28 (01): : 35 - 46
  • [40] INTEGRABILITY AND BIFURCATIONS OF LIMIT CYCLES IN A CUBIC KOLMOGOROV SYSTEM
    Feng, Li
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (04):