DISTRIBUTION OF LIMIT CYCLES OF THE PLANAR CUBIC SYSTEM

被引:0
|
作者
李继彬
机构
[1] Teaching and Researeh Section of Mathematics
[2] Kunming Engineering
关键词
D O I
暂无
中图分类号
学科分类号
摘要
<正> The results of this paper are as follows: (ⅰ) For the planar cubic system (E)α, the existence on distribution of limit cycles with the structure (1) + (1) + (1)((1) + (1))has been proved. (ⅱ) For the non-linear oscillators (1.1′) and (1.2′) without xg(x)>0, some sufficient conditions on the existence of limit cycle containing more than one singular point in its interior are given.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 50 条
  • [1] DISTRIBUTION OF LIMIT CYCLES OF THE PLANAR CUBIC SYSTEM
    李继彬
    [J]. Science China Mathematics, 1985, (01) : 35 - 46
  • [2] DISTRIBUTION OF LIMIT-CYCLES OF THE PLANAR CUBIC SYSTEM
    LI, JB
    [J]. SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1985, 28 (01): : 35 - 46
  • [3] LIMIT CYCLES AND CENTERS IN A CUBIC PLANAR SYSTEM
    Cherkas, Leonid
    Romanovski, Valery G.
    Xing, Yepeng
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (12): : 4127 - 4135
  • [4] On the number and distribution of limit cycles in a cubic system
    Maoan, H
    Zhang, TH
    Hong, Z
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4285 - 4292
  • [5] On a new type of bifurcation of limit cycles for a planar cubic system
    Departament de Matemàtica, Univ. Lleida, Avda. Jaume II, 69 C., Lleida, Spain
    不详
    [J]. Nonlinear Anal Theory Methods Appl, 2 (139-149):
  • [6] On a new type of bifurcation of limit cycles for a planar cubic system
    Chavarriga, J
    Giacomini, H
    Giné, J
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (02) : 139 - 149
  • [7] ALGEBRAIC LIMIT CYCLES OF PLANAR CUBIC SYSTEMS
    Volokitin, E. P.
    Cheresiz, V. M.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 2045 - 2054
  • [8] Limit Cycles of A Cubic Kolmogorov System
    Li, Feng
    [J]. PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 619 - 622
  • [9] Limit cycles of a cubic Kolmogorov system
    Lloyd, NG
    Pearson, JM
    Saez, E
    Szanto, I
    [J]. APPLIED MATHEMATICS LETTERS, 1996, 9 (01) : 15 - 18
  • [10] Bifurcations of limit cycles in a cubic system
    Zhang, TH
    Zang, H
    Han, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 20 (03) : 629 - 638