A cubic system with twelve small amplitude limit cycles

被引:38
|
作者
Liu, YR
Huang, WT [1 ]
机构
[1] Guilin Univ Elect Technol, Dept Comp Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Cent S Univ, Coll Math Sci & Comp Technol, Changsha 410083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2005年 / 129卷 / 02期
基金
中国国家自然科学基金;
关键词
limit cycle; focal value; singular point value; Poincard succession function;
D O I
10.1016/j.bulsci.2004.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the bifurcation of limit cycles for a cubic polynomial system is investigated. By the computation of the singular point values, we prove that the system has 12 small amplitude limit cycles. The process of the proof is algebraic and symbolic. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 50 条