Cubic system with eight small-amplitude limit cycles

被引:0
|
作者
James, E.M. [1 ]
Lloyd, N.G. [1 ]
机构
[1] Univ Coll of Wales, Aberystwyth, United Kingdom
基金
美国国家科学基金会;
关键词
Mathematical Techniques - Differential Equations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In much recent research on Hilbert's sixteenth problem, limit cycles which arise by bifurcation have been investigated. It has long been known that in quadratic systems at most three limit cycles can bifurcate from a critical point, and that the maximum number in symmetric cubic systems is five. Examples exist in the literature of cubic systems with six small-amplitude limit cycles. In this paper, a class of cubic systems with eight such limit cycles is described.
引用
收藏
页码:163 / 171
相关论文
共 50 条
  • [1] A CUBIC SYSTEM WITH 8 SMALL-AMPLITUDE LIMIT-CYCLES
    NING, SC
    MA, SL
    KWEK, KH
    ZHENG, ZM
    APPLIED MATHEMATICS LETTERS, 1994, 7 (04) : 23 - 27
  • [2] A CUBIC SYSTEM WITH 8 SMALL-AMPLITUDE LIMIT-CYCLES
    JAMES, EM
    LLOYD, NG
    IMA JOURNAL OF APPLIED MATHEMATICS, 1991, 47 (02) : 163 - 171
  • [3] Bifurcation of ten small-amplitude limit cycles by perturbing a quadratic Hamiltonian system with cubic polynomials
    Tian, Yun
    Yu, Pei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 971 - 990
  • [4] A cubic system with twelve small amplitude limit cycles
    Liu, YR
    Huang, WT
    BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (02): : 83 - 98
  • [5] On a cubic system with eight limit cycles
    Ning, Shucheng
    Xia, Bican
    Zheng, Zhiming
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (04) : 595 - 605
  • [6] Small-amplitude limit cycles in polynomial Lienard systems
    Christopher, Colin J.
    Lloyd, Noel G.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (02): : 183 - 190
  • [7] Small-Amplitude Limit Cycles of Certain Planar Differential Systems
    Jaume Giné
    Claudia Valls
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [8] Small-amplitude limit cycles in Lienard systems via multiplicity
    Gasull, A
    Torregrosa, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) : 186 - 211
  • [9] Small-amplitude limit cycles of polynomial Linard systems
    HAN MaoAn
    TIAN Yun
    YU Pei
    Science China(Mathematics), 2013, 56 (08) : 1546 - 1559
  • [10] Small-amplitude limit cycles of polynomial Liénard systems
    MaoAn Han
    Yun Tian
    Pei Yu
    Science China Mathematics, 2013, 56 : 1543 - 1556