Cubic system with eight small-amplitude limit cycles

被引:0
|
作者
James, E.M. [1 ]
Lloyd, N.G. [1 ]
机构
[1] Univ Coll of Wales, Aberystwyth, United Kingdom
基金
美国国家科学基金会;
关键词
Mathematical Techniques - Differential Equations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In much recent research on Hilbert's sixteenth problem, limit cycles which arise by bifurcation have been investigated. It has long been known that in quadratic systems at most three limit cycles can bifurcate from a critical point, and that the maximum number in symmetric cubic systems is five. Examples exist in the literature of cubic systems with six small-amplitude limit cycles. In this paper, a class of cubic systems with eight such limit cycles is described.
引用
收藏
页码:163 / 171
相关论文
共 50 条
  • [41] Amplitude control of limit cycles in Langford system
    Cui, Yan
    Liu, Suhua
    Tang, Jiashi
    Meng, Yimin
    CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 335 - 340
  • [42] A relation between small amplitude and big limit cycles
    Gasull, A
    Torregrosa, J
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (04) : 1277 - 1303
  • [43] Asymptotic Expansion of the Polarization Spectrum of a Two-Level System in a Polychromatic Field in the Small-Amplitude Limit
    A. G. Antipov
    S. A. Pul’kin
    S. V. Uvarova
    Optics and Spectroscopy, 2019, 127 : 288 - 292
  • [44] Asymptotic Expansion of the Polarization Spectrum of a Two-Level System in a Polychromatic Field in the Small-Amplitude Limit
    Antipov, A. G.
    Pul'kin, S. A.
    Uvarova, S. V.
    OPTICS AND SPECTROSCOPY, 2019, 127 (02) : 288 - 292
  • [45] THE SMALL-AMPLITUDE LIMIT OF THE SPECTRAL TRANSFORM FOR THE PERIODIC KORTEWEG-DEVRIES EQUATION
    OSBORNE, AR
    BERGAMASCO, L
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1985, 85 (02): : 229 - 243
  • [46] Small-amplitude defocusing nematicons
    Horikis, Theodoros P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (02)
  • [47] ON THEORY OF SMALL-AMPLITUDE OSCILLATIONS
    GUREVICH, GI
    DOKLADY AKADEMII NAUK SSSR, 1961, 138 (06): : 1313 - &
  • [48] SMALL-AMPLITUDE SWIMMING OF A SPHERE
    FELDERHOF, BU
    JONES, RB
    PHYSICA A, 1994, 202 (1-2): : 119 - 144
  • [49] Small Amplitude Limit Cycles and Local Bifurcation of Critical Periods for a Quartic Kolmogorov System
    He, Dongping
    Huang, Wentao
    Wang, Qinlong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (02)
  • [50] A SYSTEM OF DEGREE FOUR WITH AN INVARIANT TRIANGLE AND AT LEAST THREE SMALL AMPLITUDE LIMIT CYCLES
    Liu, Z. H.
    Saez, E.
    Szanto, I.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2010, (69) : 1 - 7