Cubic system with eight small-amplitude limit cycles

被引:0
|
作者
James, E.M. [1 ]
Lloyd, N.G. [1 ]
机构
[1] Univ Coll of Wales, Aberystwyth, United Kingdom
基金
美国国家科学基金会;
关键词
Mathematical Techniques - Differential Equations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In much recent research on Hilbert's sixteenth problem, limit cycles which arise by bifurcation have been investigated. It has long been known that in quadratic systems at most three limit cycles can bifurcate from a critical point, and that the maximum number in symmetric cubic systems is five. Examples exist in the literature of cubic systems with six small-amplitude limit cycles. In this paper, a class of cubic systems with eight such limit cycles is described.
引用
收藏
页码:163 / 171
相关论文
共 50 条
  • [31] Bifurcations of limit cycles in a cubic system with cubic perturbations
    Zang, Hong
    Zhang, Tonghua
    Han, Maoan
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) : 341 - 358
  • [32] VALIDITY OF THE SMALL-AMPLITUDE LIMIT OF THE NUCLEAR BORN-OPPENHEIMER METHOD
    ZETTILI, N
    NUCLEAR PHYSICS A, 1994, 576 (01) : 1 - 20
  • [33] A CUBIC DIFFERENTIAL SYSTEM WITH NINE LIMIT CYCLES
    Lloyd, Noel G.
    Pearson, Jane M.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (03): : 293 - 304
  • [34] DISTRIBUTION OF LIMIT CYCLES OF THE PLANAR CUBIC SYSTEM
    李继彬
    Science China Mathematics, 1985, (01) : 35 - 46
  • [35] A cubic Kolmogorov system with six limit cycles
    Lloyd, NG
    Pearson, JM
    Saéz, E
    Szántó, I
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (3-4) : 445 - 455
  • [36] On the number and distribution of limit cycles in a cubic system
    Maoan, H
    Zhang, TH
    Hong, Z
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4285 - 4292
  • [37] LIMIT CYCLES FOR A CUBIC GENERALIZED LIENARD SYSTEM
    Zhao, Jinyuan
    Li, Jun
    Wu, Kuilin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [38] DISTRIBUTION OF LIMIT CYCLES OF THE PLANAR CUBIC SYSTEM
    李继彬
    ScienceinChina,SerA., 1985, Ser.A.1985 (01) : 35 - 46
  • [39] LIMIT-CYCLES IN A CUBIC SYSTEM WITH A CUSP
    XIAN, W
    KOOIJ, RE
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) : 1609 - 1622
  • [40] LIMIT CYCLES AND CENTERS IN A CUBIC PLANAR SYSTEM
    Cherkas, Leonid
    Romanovski, Valery G.
    Xing, Yepeng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (12): : 4127 - 4135