Compiling Bayesian Network Classifiers into Decision Graphs

被引:0
|
作者
Shih, Andy [1 ]
Choi, Arthur [1 ]
Darwiche, Adnan [1 ]
机构
[1] Univ Calif Los Angeles, Comp Sci Dept, Los Angeles, CA 90024 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an algorithm for compiling Bayesian network classifiers into decision graphs that mimic the input and output behavior of the classifiers. In particular, we compile Bayesian network classifiers into ordered decision graphs, which are tractable and can be exponentially smaller in size than decision trees. This tractability facilitates reasoning about the behavior of Bayesian network classifiers, including the explanation of decisions they make. Our compilation algorithm comes with guarantees on the time of compilation and the size of compiled decision graphs. We apply our compilation algorithm to classifiers from the literature and discuss some case studies in which we show how to automatically explain their decisions and verify properties of their behavior.
引用
收藏
页码:7966 / 7974
页数:9
相关论文
共 50 条
  • [31] Bayesian Model Averaging of Bayesian Network Classifiers for Intrusion Detection
    Xiao, Liyuan
    Chen, Yetian
    Chang, Carl K.
    2014 38TH ANNUAL IEEE INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE WORKSHOPS (COMPSACW 2014), 2014, : 128 - 133
  • [32] Efficient parameter learning of Bayesian network classifiers
    Nayyar A. Zaidi
    Geoffrey I. Webb
    Mark J. Carman
    François Petitjean
    Wray Buntine
    Mike Hynes
    Hans De Sterck
    Machine Learning, 2017, 106 : 1289 - 1329
  • [33] On discriminative Bayesian network classifiers and logistic regression
    Roos T.
    Wettig H.
    Grünwald P.
    Myllymäki P.
    Tirri H.
    Machine Learning, 2005, 59 (03) : 267 - 296
  • [34] Adaptive learning algorithms for Bayesian network classifiers
    Departamento de Matemática, CEOC, Universidade de Aveiro, Aveiro 3810-193, Portugal
    AI Commun, 2008, 1 (87-88):
  • [35] A Symbolic Approach to Explaining Bayesian Network Classifiers
    Shih, Andy
    Choi, Arthur
    Darwiche, Adnan
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5103 - 5111
  • [36] Bayesian network classifiers for mineral potential mapping
    Porwal, A
    Carranza, EJM
    Hale, M
    COMPUTERS & GEOSCIENCES, 2006, 32 (01) : 1 - 16
  • [37] On Discriminative Parameter Learning of Bayesian Network Classifiers
    Pernkopf, Franz
    Wohlmayr, Michael
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 221 - 237
  • [38] Efficient parameter learning of Bayesian network classifiers
    Zaidi, Nayyar A.
    Webb, Geoffrey I.
    Carman, Mark J.
    Petitjean, Francois
    Buntine, Wray
    Hynes, Mike
    De Sterck, Hans
    MACHINE LEARNING, 2017, 106 (9-10) : 1289 - 1329
  • [39] Bayesian Network Model Averaging Classifiers by Subbagging
    Sugahara, Shouta
    Aomi, Itsuki
    Ueno, Maomi
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 461 - 472
  • [40] Adaptive learning algorithms for Bayesian network classifiers
    Castillo, Gladys
    AI COMMUNICATIONS, 2008, 21 (01) : 87 - 88