Compiling Bayesian Network Classifiers into Decision Graphs

被引:0
|
作者
Shih, Andy [1 ]
Choi, Arthur [1 ]
Darwiche, Adnan [1 ]
机构
[1] Univ Calif Los Angeles, Comp Sci Dept, Los Angeles, CA 90024 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an algorithm for compiling Bayesian network classifiers into decision graphs that mimic the input and output behavior of the classifiers. In particular, we compile Bayesian network classifiers into ordered decision graphs, which are tractable and can be exponentially smaller in size than decision trees. This tractability facilitates reasoning about the behavior of Bayesian network classifiers, including the explanation of decisions they make. Our compilation algorithm comes with guarantees on the time of compilation and the size of compiled decision graphs. We apply our compilation algorithm to classifiers from the literature and discuss some case studies in which we show how to automatically explain their decisions and verify properties of their behavior.
引用
收藏
页码:7966 / 7974
页数:9
相关论文
共 50 条
  • [21] Asynchronous dynamic Bayesian network classifiers
    Wang S.-C.
    Zhang L.
    Zheng F.
    Jisuanji Xuebao/Chinese Journal of Computers, 2020, 43 (09): : 1737 - 1754
  • [22] Maximum Margin Bayesian Network Classifiers
    Pernkopf, Franz
    Wohlmayr, Michael
    Tschiatschek, Sebastian
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (03) : 521 - 532
  • [23] bnclassify: Learning Bayesian Network Classifiers
    Mihaljevic, Bojan
    Bielza, Concha
    Larranaga, Pedro
    R JOURNAL, 2018, 10 (02): : 455 - 468
  • [24] Stochastic optimization for bayesian network classifiers
    Ren, Yi
    Wang, LiMin
    Li, XiongFei
    Pang, Meng
    Wei, JunYang
    APPLIED INTELLIGENCE, 2022, 52 (13) : 15496 - 15516
  • [25] Widened Learning of Bayesian Network Classifiers
    Sampson, Oliver R.
    Berthold, Michael R.
    ADVANCES IN INTELLIGENT DATA ANALYSIS XV, 2016, 9897 : 215 - 225
  • [26] Stochastic optimization for bayesian network classifiers
    Yi Ren
    LiMin Wang
    XiongFei Li
    Meng Pang
    JunYang Wei
    Applied Intelligence, 2022, 52 : 15496 - 15516
  • [27] On Robust Trimming of Bayesian Network Classifiers
    Choi, Yoo Jung
    Van den Broeck, Guy
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5002 - 5009
  • [28] Using Bayesian network for combining classifiers
    De Stefano, Claudio
    D'Elia, Ciro
    Marcelli, Angelo
    di Freca, Alessandra Scotto
    14TH INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, PROCEEDINGS, 2007, : 73 - +
  • [29] Discriminative learning of Bayesian network classifiers
    Pernkopf, Franz
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 2007, : 422 - 427
  • [30] Improving strength Pareto evolutionary algorithm based on Bayesian network with decision graphs
    Yao, Jin-Tao
    Lin, Ya-Ping
    Zhang, Ming-Wu
    Tong, Diao-Sheng
    Jisuanji Xuebao/Chinese Journal of Computers, 2005, 28 (12): : 1993 - 1999