Machine learning-enabled framework for the prediction of mechanical properties in new high entropy alloys

被引:23
|
作者
Bundela, Amit Singh [1 ]
Rahul, M. R. [1 ]
机构
[1] Indian Inst Technol ISM, Dept Fuel Minerals & Met Engn, Dhanbad 826004, Jharkhand, India
关键词
Microhardness; High entropy alloys; Feature selection; Machine learning; Principal component analysis; Materials informatics; SELECTION;
D O I
10.1016/j.jallcom.2021.164578
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prediction of properties of new compositions will accelerate the material design and development. The current study uses a machine learning framework to predict the microhardness of high entropy alloys. Several feature selection algorithms are used to identify the essential material descriptors. The stability selection algorithm gives optimum material descriptors for the current dataset for the microhardness prediction. Eight different machine learning algorithms are trained and tested for microhardness prediction. The accuracy of prediction improved by reducing the higher-dimensional data to lower dimensions using principal component analysis. The current study shows the testing R-2 score of more than 0.89 for XGBoost, Random forest, and Bagging regressor algorithms. Experimental data confirms the applicability of various trained algorithms for property prediction, and for the current study, ANN shows better performance for the new experimental data. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Machine Learning-Enabled Prediction and High-Throughput Screening of Polymer Membranes for Pervaporation Separation
    Wang, Mao
    Xu, Qisong
    Tang, Hongjian
    Jiang, Jianwen
    ACS Applied Materials and Interfaces, 2022, 14 (06):
  • [22] Machine Learning-Enabled Genome Mining and Bioactivity Prediction of Natural Products
    Yuan, Yujie
    Shi, Chengyou
    Zhao, Huimin
    ACS SYNTHETIC BIOLOGY, 2023, 12 (09): : 2650 - 2662
  • [23] Machine learning-enabled retrobiosynthesis of molecules
    Tianhao Yu
    Aashutosh Girish Boob
    Michael J. Volk
    Xuan Liu
    Haiyang Cui
    Huimin Zhao
    Nature Catalysis, 2023, 6 : 137 - 151
  • [24] Machine learning assisted design of novel refractory high entropy alloys with enhanced mechanical properties
    Catal, A. A.
    Bedir, E.
    Yilmaz, R.
    Swider, M. A.
    Lee, C.
    El-Atwani, O.
    Maier, H. J.
    Ozdemir, H. C.
    Canadinc, D.
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 231
  • [25] Machine learning-assisted design of high-entropy alloys with superior mechanical properties
    He, Jianye
    Li, Zezhou
    Zhao, Pingluo
    Zhang, Hongmei
    Zhang, Fan
    Wang, Lin
    Cheng, Xingwang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 260 - 286
  • [26] Mechanical properties of AlCoCrCuFeNi high-entropy alloys using molecular dynamics and machine learning
    Nguyen, Hoang-Giang
    Le, Thanh-Dung
    Nguyen, Hong-Giang
    Fang, Te-Hua
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2024, 160
  • [27] Machine Learning Enabled Prediction of Mechanical Properties of Tungsten Disulfide Monolayer
    Wang, Xinyu
    Han, Dan
    Hong, Yang
    Sun, Haiyi
    Zhang, Jingzhi
    Zhang, Jingchao
    ACS OMEGA, 2019, 4 (06): : 10121 - 10128
  • [28] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yong-Gang Yan
    Kun Wang
    Tungsten, 2023, 5 : 531 - 538
  • [29] Machine learning prediction of hardness in solid solution high entropy alloys
    Gao, Zhiyu
    Zhao, Fei
    Gao, Sida
    Xia, Tian
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [30] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yong-Gang Yan
    Kun Wang
    Tungsten, 2023, 5 (04) : 531 - 538