Machine learning-enabled framework for the prediction of mechanical properties in new high entropy alloys

被引:23
|
作者
Bundela, Amit Singh [1 ]
Rahul, M. R. [1 ]
机构
[1] Indian Inst Technol ISM, Dept Fuel Minerals & Met Engn, Dhanbad 826004, Jharkhand, India
关键词
Microhardness; High entropy alloys; Feature selection; Machine learning; Principal component analysis; Materials informatics; SELECTION;
D O I
10.1016/j.jallcom.2021.164578
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prediction of properties of new compositions will accelerate the material design and development. The current study uses a machine learning framework to predict the microhardness of high entropy alloys. Several feature selection algorithms are used to identify the essential material descriptors. The stability selection algorithm gives optimum material descriptors for the current dataset for the microhardness prediction. Eight different machine learning algorithms are trained and tested for microhardness prediction. The accuracy of prediction improved by reducing the higher-dimensional data to lower dimensions using principal component analysis. The current study shows the testing R-2 score of more than 0.89 for XGBoost, Random forest, and Bagging regressor algorithms. Experimental data confirms the applicability of various trained algorithms for property prediction, and for the current study, ANN shows better performance for the new experimental data. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Machine learning guided phase formation prediction of high entropy alloys
    Qu N.
    Liu Y.
    Zhang Y.
    Yang D.
    Han T.
    Liao M.
    Lai Z.
    Zhu J.
    Zhang L.
    Materials Today Communications, 2022, 32
  • [32] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    ACTA MATERIALIA, 2019, 169 : 225 - 236
  • [33] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Yao-Jen Chang
    Chia-Yung Jui
    Wen-Jay Lee
    An-Chou Yeh
    JOM, 2019, 71 : 3433 - 3442
  • [34] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Chang, Yao-Jen
    Jui, Chia-Yung
    Lee, Wen-Jay
    Yeh, An-Chou
    JOM, 2019, 71 (10) : 3433 - 3442
  • [35] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yan, Yong-Gang
    Wang, Kun
    TUNGSTEN, 2023, 5 (04) : 531 - 538
  • [36] Machine learning guided phase formation prediction of high entropy alloys
    Qu, Nan
    Liu, Yong
    Zhang, Yan
    Yang, Danni
    Han, Tianyi
    Liao, Mingqing
    Lai, Zhonghong
    Zhu, Jingchuan
    Zhang, Lin
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [37] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yong-Gang Yan
    Kun Wang
    Tungsten, 2023, (04) : 531 - 538
  • [38] Improving phase prediction accuracy for high entropy alloys with Machine learning
    Risal, Sandesh
    Zhu, Weihang
    Guillen, Pablo
    Sun, Li
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192
  • [39] Machine learning guided phase formation prediction of high entropy alloys
    Qu, Nan
    Liu, Yong
    Zhang, Yan
    Yang, Danni
    Han, Tianyi
    Liao, Mingqing
    Lai, Zhonghong
    Zhu, Jingchuan
    Zhang, Lin
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [40] Digital Twin Framework for Machine Learning-Enabled Integrated Production and Logistics Processes
    Greis, Noel P.
    Nogueira, Monica L.
    Rohde, Wolfgang
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: ARTIFICIAL INTELLIGENCE FOR SUSTAINABLE AND RESILIENT PRODUCTION SYSTEMS, APMS 2021, PT I, 2021, 630 : 218 - 227