Machine learning-assisted design of high-entropy alloys with superior mechanical properties

被引:4
|
作者
He, Jianye [1 ,3 ]
Li, Zezhou [1 ,2 ,3 ]
Zhao, Pingluo [1 ,3 ]
Zhang, Hongmei [1 ,2 ,3 ]
Zhang, Fan [1 ,2 ,3 ]
Wang, Lin [1 ,3 ]
Cheng, Xingwang [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Tangshan Res Inst, Tangshan 063000, Peoples R China
[3] Natl Key Lab Sci & Technol Mat Shock & Impact, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN STORAGE PROPERTIES; FEATURE-SELECTION; FATIGUE BEHAVIOR; NEURAL-NETWORKS; PHASE; MICROSTRUCTURE; ALGORITHMS; PREDICTION; CLASSIFICATION; FRAMEWORK;
D O I
10.1016/j.jmrt.2024.09.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most recently, high-entropy alloys (HEAs) with 5 or more elements open a new area for materials exploration with substantial mechanical properties. The large composition space and numerous structures of HEAs bring significant difficulties for phase design and determination of mechanical property. Machine learning, one of most rapidly growing scientific and technical field, meets at the intersection of computer science and materials science, and at the center of artificial intelligence. Machine learning provides the opportunity to build up the relationship between multiple physical properties and mechanical properties. The fast changes of this field call for significant practice for materials community to utilize it as a more efficient, accurate and interpretable tool. In this review, we summarize the most promising machine learning models, combined with high-throughput simulation and experimental screening, to predict and fabricate HEAs with desired superb mechanical properties.
引用
收藏
页码:260 / 286
页数:27
相关论文
共 50 条
  • [1] Machine learning-assisted design of high-entropy alloys for optimal strength and ductility
    Singh, Shailesh Kumar
    Mahanta, Bashista Kumar
    Rawat, Pankaj
    Kumar, Sanjeev
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1007
  • [2] Machine learning-assisted prediction of mechanical properties of high-entropy alloy/graphene nanocomposite
    Wu, Qingqing
    Gao, Tinghong
    Liu, Guiyang
    Ma, Yong
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [3] Machine learning-assisted design of refractory high-entropy alloys with targeted yield strength and fracture strain
    He, Jianye
    Li, Zezhou
    Lin, Jingchen
    Zhao, Pingluo
    Zhang, Hongmei
    Zhang, Fan
    Wang, Lin
    Cheng, Xingwang
    MATERIALS & DESIGN, 2024, 246
  • [4] Machine learning-assisted prediction and interpretation of electrochemical corrosion behavior in high-entropy alloys
    Zou, Yun
    Qian, Jiahao
    Wang, Xu
    Li, Songlin
    Li, Yang
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 244
  • [5] Machine learning-assisted discovery of Cr, Al-containing high-entropy alloys for high oxidation resistance
    Dong, Ziqiang
    Sun, Ankang
    Yang, Shuang
    Yu, Xiaodong
    Yuan, Hao
    Wang, Zihan
    Deng, Luchen
    Song, Jinxia
    Wang, Dinggang
    Kang, Yongwang
    CORROSION SCIENCE, 2023, 220
  • [6] Machine learning assisted design of novel refractory high entropy alloys with enhanced mechanical properties
    Catal, A. A.
    Bedir, E.
    Yilmaz, R.
    Swider, M. A.
    Lee, C.
    El-Atwani, O.
    Maier, H. J.
    Ozdemir, H. C.
    Canadinc, D.
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 231
  • [7] Mechanical properties of AlCoCrCuFeNi high-entropy alloys using molecular dynamics and machine learning
    Nguyen, Hoang-Giang
    Le, Thanh-Dung
    Nguyen, Hong-Giang
    Fang, Te-Hua
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2024, 160
  • [8] Machine Learning Design for High-Entropy Alloys: Models and Algorithms
    Liu, Sijia
    Yang, Chao
    METALS, 2024, 14 (02)
  • [9] Machine learning-assisted design of biomedical high entropy alloys with low elastic modulus for orthopedic implants
    Ozdemir, H. C.
    Bedir, E.
    Yilmaz, R.
    Yagci, M. B.
    Canadinc, D.
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (24) : 11151 - 11169
  • [10] Machine learning-assisted mechanical property prediction and descriptor-property correlation analysis of high-entropy ceramics
    Zhou, Qian
    Xu, Feng
    Gao, Chengzuan
    Zhang, Dan
    Shi, Xianqing
    Yuen, Muk-Fung
    Zuo, Dunwen
    CERAMICS INTERNATIONAL, 2023, 49 (04) : 5760 - 5769