Variable-Based Spatiotemporal Trajectory Data Visualization Illustrated

被引:7
|
作者
He, Jing [1 ]
Chen, Haonan [2 ]
Chen, Yijin [2 ]
Tang, Xinming [3 ]
Zou, Yebin [4 ,5 ,6 ]
机构
[1] Tsinghua Univ, Sch Journalism & Commun, Beijing 100084, Peoples R China
[2] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[3] Natl Adm Surveying Mapping & Geoinformat China, Satellite Surveying & Mapping Applicat Ctr, Beijing 100048, Peoples R China
[4] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Beijing GEOWAY Software Co Ltd, Beijing 100043, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Visualization; trajectory data; spatiotemporal data; attribute; multivariate trajectory; VISUAL ANALYSIS; MASS MOBILITY; EXPLORATION; ABSTRACTION; ANALYTICS; MOVEMENT; MAP; FRAMEWORK; PATTERNS; BEHAVIOR;
D O I
10.1109/ACCESS.2019.2942844
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a frontier research topic in the field of scientific visualization, trajectory data visualization extracts valuable patterns and knowledge from trajectory data for decision support via spatiotemporal trajectory visualization techniques. We propose the concept of multivariate trajectory data and interpret two categories of attributes that are based on geographical space and abstract space. Properly analyzing multivariate trajectory data depends on many factors such as visualization task and data sparsity. Therefore, we generalize rich interactions to explore the evolution of trajectory events and transform the issue into a more intelligibly perceptual task, which derives our discussion regarding advantages and limitations of the analytical methods. This review endeavors to provide a quick and thorough cognition and comprehension with regard to fundamental features and numerous outcomes in visual analytics for trajectory data, seeks to promote comparisons and criticisms about the descriptive framework for multivariate spatiotemporal trajectory data visualization, and aims to encourage the exploration of emerging methods and techniques.
引用
收藏
页码:143646 / 143672
页数:27
相关论文
共 50 条
  • [41] Instrumental Variable-based Identification for Causal Effects using Covariate Information
    Kawakami, Yuta
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 12131 - 12138
  • [42] A Progress Variable-based Model for the Calculation of Nitrogen Oxides in turbulent Flames
    Fiolitakis, A.
    Gerlinger, P.
    Noll, B.
    Aigner, M.
    Krebs, W.
    Wegner, B.
    25. DEUTSCHER FLAMMENTAG: VERBRENNUNG UND FEUERUNG, 2011, 2119 : 457 - 464
  • [43] Dynamic Attribute Network Representation Learning and Visualization of Integrated Spatiotemporal Trajectory
    Cao Y.
    Yan M.
    Jia X.
    Dong Y.
    Chen H.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (03): : 487 - 496
  • [44] PG-TRAJECTORY: A PostgreSQL/PostGIS based Data Model for Spatiotemporal Trajectories
    Kucuk, Ahmet
    Hamdi, Shah Muhammad
    Aydin, Berkay
    Schuh, Michael A.
    Angryk, Rafal A.
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCES ON BIG DATA AND CLOUD COMPUTING (BDCLOUD 2016) SOCIAL COMPUTING AND NETWORKING (SOCIALCOM 2016) SUSTAINABLE COMPUTING AND COMMUNICATIONS (SUSTAINCOM 2016) (BDCLOUD-SOCIALCOM-SUSTAINCOM 2016), 2016, : 81 - 88
  • [45] Safe Trajectory Planning for Incremental Robots Based on a Spatiotemporal Variable-Step-Size A* Algorithm
    Hu, Haonan
    Wen, Xin
    Hu, Jiazun
    Chen, Haiyu
    Xia, Chenyu
    Zhang, Hui
    SENSORS, 2024, 24 (11)
  • [46] Calculation of Collective Variable-based PMF by Combining WHAM with Umbrella Sampling
    Xu Wei-Xin
    Li Yang
    Zhang, John Z. H.
    CHINESE PHYSICS LETTERS, 2012, 29 (06)
  • [47] Instrumental variable-based parameter estimation for nonlinear systems with scarce measurements
    Xia, Huafeng
    Yin, Weixia
    Miao, Xinghua
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 5202 - 5207
  • [48] DEGraphCS: Embedding Variable-based Flow Graph for Neural Code Search
    Zeng, Chen
    Yu, Yue
    Li, Shanshan
    Xia, Xin
    Wang, Zhiming
    Geng, Mingyang
    Bai, Linxiao
    Dong, Wei
    Liao, Xiangke
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2023, 32 (02)
  • [49] Auxiliary Variable-Based Identification Algorithms for Uncertain-Input Models
    Chen, Jing
    Zhu, Quanmin
    Chandra, Budi
    Pu, Yan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (07) : 3389 - 3404
  • [50] Variable-based missing mechanism for an incomplete contingency table with unit missingness
    Jeon, Saebom
    Kwon, Tae Yeon
    Park, Yousung
    STATISTICS & PROBABILITY LETTERS, 2019, 146 : 90 - 96