Variable-Based Spatiotemporal Trajectory Data Visualization Illustrated

被引:7
|
作者
He, Jing [1 ]
Chen, Haonan [2 ]
Chen, Yijin [2 ]
Tang, Xinming [3 ]
Zou, Yebin [4 ,5 ,6 ]
机构
[1] Tsinghua Univ, Sch Journalism & Commun, Beijing 100084, Peoples R China
[2] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[3] Natl Adm Surveying Mapping & Geoinformat China, Satellite Surveying & Mapping Applicat Ctr, Beijing 100048, Peoples R China
[4] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Beijing GEOWAY Software Co Ltd, Beijing 100043, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Visualization; trajectory data; spatiotemporal data; attribute; multivariate trajectory; VISUAL ANALYSIS; MASS MOBILITY; EXPLORATION; ABSTRACTION; ANALYTICS; MOVEMENT; MAP; FRAMEWORK; PATTERNS; BEHAVIOR;
D O I
10.1109/ACCESS.2019.2942844
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a frontier research topic in the field of scientific visualization, trajectory data visualization extracts valuable patterns and knowledge from trajectory data for decision support via spatiotemporal trajectory visualization techniques. We propose the concept of multivariate trajectory data and interpret two categories of attributes that are based on geographical space and abstract space. Properly analyzing multivariate trajectory data depends on many factors such as visualization task and data sparsity. Therefore, we generalize rich interactions to explore the evolution of trajectory events and transform the issue into a more intelligibly perceptual task, which derives our discussion regarding advantages and limitations of the analytical methods. This review endeavors to provide a quick and thorough cognition and comprehension with regard to fundamental features and numerous outcomes in visual analytics for trajectory data, seeks to promote comparisons and criticisms about the descriptive framework for multivariate spatiotemporal trajectory data visualization, and aims to encourage the exploration of emerging methods and techniques.
引用
收藏
页码:143646 / 143672
页数:27
相关论文
共 50 条
  • [21] Collective variable-based enhanced sampling and machine learning
    Chen, Ming
    EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (10):
  • [22] Multiscale Visualization of Trajectory Data
    Liang, Sheng
    Xu, Qing
    Guo, Yuejun
    Fan, Yang
    2015 19TH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION IV 2015, 2015, : 206 - 210
  • [23] Spatiotemporal trajectory clustering: A clustering algorithm for spatiotemporal data
    Ansari, Mohd Yousuf
    Mainuddin
    Ahmad, Amir
    Bhushan, Gopal
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 178
  • [24] Web-based spatiotemporal visualization of marine environment data
    何亚文
    苏奋振
    杜云艳
    肖如林
    Chinese Journal of Oceanology and Limnology, 2010, 28 (05) : 1086 - 1094
  • [25] Web-based spatiotemporal visualization of marine environment data
    何亚文
    苏奋振
    杜云艳
    肖如林
    Journal of Oceanology and Limnology, 2010, (05) : 1086 - 1094
  • [26] Web-based spatiotemporal visualization of marine environment data
    Yawen He
    Fenzhen Su
    Yunyan Du
    Rulin Xiao
    Chinese Journal of Oceanology and Limnology, 2010, 28 : 1086 - 1094
  • [27] Web-based spatiotemporal visualization of marine environment data
    He Yawen
    Su Fenzhen
    Du Yunyan
    Xiao Rulin
    CHINESE JOURNAL OF OCEANOLOGY AND LIMNOLOGY, 2010, 28 (05): : 1086 - 1094
  • [28] Papal component analysis of frequency data for variable-based interpretation of variation among populations.
    Tagaya, A
    ANTHROPOLOGICAL SCIENCE, 2003, 111 (04) : 398 - 398
  • [29] Slack variable-based control variable parameterization method for constrained engineering optimization
    Liu, Ping
    Li, Guodong
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 6800 - 6805