Variable-Based Spatiotemporal Trajectory Data Visualization Illustrated

被引:7
|
作者
He, Jing [1 ]
Chen, Haonan [2 ]
Chen, Yijin [2 ]
Tang, Xinming [3 ]
Zou, Yebin [4 ,5 ,6 ]
机构
[1] Tsinghua Univ, Sch Journalism & Commun, Beijing 100084, Peoples R China
[2] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[3] Natl Adm Surveying Mapping & Geoinformat China, Satellite Surveying & Mapping Applicat Ctr, Beijing 100048, Peoples R China
[4] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Beijing GEOWAY Software Co Ltd, Beijing 100043, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Visualization; trajectory data; spatiotemporal data; attribute; multivariate trajectory; VISUAL ANALYSIS; MASS MOBILITY; EXPLORATION; ABSTRACTION; ANALYTICS; MOVEMENT; MAP; FRAMEWORK; PATTERNS; BEHAVIOR;
D O I
10.1109/ACCESS.2019.2942844
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a frontier research topic in the field of scientific visualization, trajectory data visualization extracts valuable patterns and knowledge from trajectory data for decision support via spatiotemporal trajectory visualization techniques. We propose the concept of multivariate trajectory data and interpret two categories of attributes that are based on geographical space and abstract space. Properly analyzing multivariate trajectory data depends on many factors such as visualization task and data sparsity. Therefore, we generalize rich interactions to explore the evolution of trajectory events and transform the issue into a more intelligibly perceptual task, which derives our discussion regarding advantages and limitations of the analytical methods. This review endeavors to provide a quick and thorough cognition and comprehension with regard to fundamental features and numerous outcomes in visual analytics for trajectory data, seeks to promote comparisons and criticisms about the descriptive framework for multivariate spatiotemporal trajectory data visualization, and aims to encourage the exploration of emerging methods and techniques.
引用
收藏
页码:143646 / 143672
页数:27
相关论文
共 50 条
  • [31] Adjoint variable-based shape optimization with bounding surface constraints
    Damigos, Marios G.
    Papoutsis-Kiachagias, Evangelos M.
    Giannakoglou, Kyriakos C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (03) : 590 - 609
  • [32] Instrumental Variable-Based OMP Identification Algorithm for Hammerstein Systems
    Zhang, Shuo
    Wang, Dongqing
    Yan, Yaru
    COMPLEXITY, 2018,
  • [33] New auxiliary variable-based ADMM for nonconvex AC OPF
    Zhang, Miao
    Kar, Rabi Shankar
    Miao, Zhixin
    Fan, Lingling
    ELECTRIC POWER SYSTEMS RESEARCH, 2019, 174
  • [34] cpmViz: A Web-Based Visualization Tool for Uncertain Spatiotemporal Data
    Nagel, Fabian
    Castiglia, Giuliano
    Ademaj, Gemza
    Buchmller, Juri
    Schlegel, Udo
    Keim, Daniel A.
    2019 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2019, : 140 - 141
  • [35] Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election
    Kuentzler, Theresa
    GERMAN POLITICS, 2018, 27 (01) : 25 - 43
  • [36] Multilevel Visualization of Travelogue Trajectory Data
    Ma, Yongsai
    Wang, Yang
    Xu, Guangluan
    Tai, Xianqing
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (01):
  • [37] A transformed TLM formulation for adjoint variable-based sensitivity analysis
    Abolghasem, P
    Bakr, MH
    Hoefer, WJR
    So, PPM
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2005, 15 (11) : 817 - 819
  • [38] Variable-based Fault Localization via Enhanced Decision Tree
    Jiang, Jiajun
    Wang, Yumeng
    Chen, Junjie
    Lv, Delin
    Liu, Mengjiao
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2024, 33 (02)
  • [39] Auxiliary Variable-Based Identification Algorithms for Uncertain-Input Models
    Jing Chen
    Quanmin Zhu
    Budi Chandra
    Yan Pu
    Circuits, Systems, and Signal Processing, 2020, 39 : 3389 - 3404
  • [40] FINITE-ELEMENT IMPLEMENTATION OF STATE VARIABLE-BASED VISCOPLASTICITY MODELS
    CHANG, TYP
    SALEEB, AF
    ISKOVITZ, I
    COMPUTERS & STRUCTURES, 1993, 46 (01) : 33 - 45