L(j, k)-labelling and maximum ordering-degrees for trees

被引:3
|
作者
Juan, Justie Su-Tzu [2 ]
Liu, Daphne Der-Fen [1 ]
Chen, Li-Yueh [2 ]
机构
[1] Calif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
[2] Natl Chi Nan Univ, Dept Comp Sci & Informat Engn, Nantou 54561, Taiwan
基金
美国国家科学基金会;
关键词
Channel assignment problem; Distance-two labelling; Trees; DISTANCE; 2; LABELING GRAPHS; NUMBER;
D O I
10.1016/j.dam.2009.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph. For two vertices u and v in G, we denote d(u, v) the distance between u and v. Let j, k be positive integers with j >= k. An L(j, k)-labelling for G is a function f : V(G) -> {0, 1, 2, ...} such that for any two vertices u and v, vertical bar f(u) - f(v)vertical bar is at least j if d(u, v) = 1; and is at least k if d(u, v) = 2. The span of f is the difference between the largest and the smallest numbers in f (V). The lambda(j,k)-number for G, denoted by lambda(j,k)(G), is the minimum span over all L(j, k)-labellings of G. We introduce a new parameter for a tree T, namely, the maximum ordering-degree, denoted by M(T). Combining this new parameter and the special family of infinite trees introduced by Chang and Lu (2003) [3], we present upper and lower bounds for lambda(j,k)(T) in terms of j, k, M(T), and Delta(T) (the maximum degree of T). For a special case when j >= Delta(T)k, the upper and the lower bounds are k apart. Moreover, we completely determine lambda(j,k)(T) for trees T with j >= M(T)k. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:692 / 698
页数:7
相关论文
共 50 条
  • [41] INTERFERENCE BETWEEN K DEGREES L AND K DEGREES S IN K MU3 DECAY MODE
    BOTTBODENHAUSEN, M
    DEBOUARD, X
    DEKKERS, D
    FELST, R
    MERMOD, R
    SAVIN, I
    SCHARFF, P
    VIVARGENT, M
    WILLITTS, TR
    WINTER, K
    PHYSICS LETTERS B, 1967, B 24 (08) : 438 - +
  • [42] The L(h, k)-labelling problem:: A survey and annotated bibliography
    Calamoneri, Tiziana
    COMPUTER JOURNAL, 2006, 49 (05): : 585 - 608
  • [43] The L(h, k)-labelling problem: A survey and annotated bibliography
    Calamoneri, Tiziana
    Computer Journal, 2006, 49 (05): : 585 - 608
  • [44] 1.3 MILLION K DEGREES L DECAYS
    FRANKEL, S
    CLINESMI.C
    TAKATS, M
    WEST, C
    WERBECK, R
    VANDYCK, O
    BLUMENTH.R
    NAGY, J
    HOMER, RJ
    HIGHLAND, V
    GREENBLA.M
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (01): : 83 - &
  • [45] On n-fold L(j, k)-and circular L(j, k)-labelings of graphs
    Lin, Wensong
    Zhang, Pu
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (16-17) : 2452 - 2461
  • [46] ON THE TRACE OF J-(K)JZ(L)J+(K)
    ULLAH, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (08): : 2857 - 2859
  • [47] On the maximum local mean order of sub-k-trees of a k-tree
    Li, Zhuo
    Ma, Tianlong
    Dong, Fengming
    Jin, Xian'an
    JOURNAL OF GRAPH THEORY, 2024, 107 (02) : 393 - 409
  • [48] Packing k-edge trees in graphs of restricted vertex degrees
    Kelmans, A. K.
    JOURNAL OF GRAPH THEORY, 2007, 55 (04) : 306 - 324
  • [49] Maximum packing for k-connected partial k-trees in polynomial time
    Dessmark, A
    Lingas, A
    Proskurowski, A
    THEORETICAL COMPUTER SCIENCE, 2000, 236 (1-2) : 179 - 191
  • [50] On the number of trees having k edges in common with a graph of bounded degrees
    Tomescu, I
    DISCRETE MATHEMATICS, 1997, 169 (1-3) : 283 - 286