L(j, k)-labelling and maximum ordering-degrees for trees

被引:3
|
作者
Juan, Justie Su-Tzu [2 ]
Liu, Daphne Der-Fen [1 ]
Chen, Li-Yueh [2 ]
机构
[1] Calif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
[2] Natl Chi Nan Univ, Dept Comp Sci & Informat Engn, Nantou 54561, Taiwan
基金
美国国家科学基金会;
关键词
Channel assignment problem; Distance-two labelling; Trees; DISTANCE; 2; LABELING GRAPHS; NUMBER;
D O I
10.1016/j.dam.2009.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph. For two vertices u and v in G, we denote d(u, v) the distance between u and v. Let j, k be positive integers with j >= k. An L(j, k)-labelling for G is a function f : V(G) -> {0, 1, 2, ...} such that for any two vertices u and v, vertical bar f(u) - f(v)vertical bar is at least j if d(u, v) = 1; and is at least k if d(u, v) = 2. The span of f is the difference between the largest and the smallest numbers in f (V). The lambda(j,k)-number for G, denoted by lambda(j,k)(G), is the minimum span over all L(j, k)-labellings of G. We introduce a new parameter for a tree T, namely, the maximum ordering-degree, denoted by M(T). Combining this new parameter and the special family of infinite trees introduced by Chang and Lu (2003) [3], we present upper and lower bounds for lambda(j,k)(T) in terms of j, k, M(T), and Delta(T) (the maximum degree of T). For a special case when j >= Delta(T)k, the upper and the lower bounds are k apart. Moreover, we completely determine lambda(j,k)(T) for trees T with j >= M(T)k. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:692 / 698
页数:7
相关论文
共 50 条
  • [21] The maximum Wiener polarity index of trees with k pendants
    Deng, Hanyuan
    Xiao, Hui
    APPLIED MATHEMATICS LETTERS, 2010, 23 (06) : 710 - 715
  • [22] Partial k-trees with maximum chromatic number
    Chlebíková, J
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 269 - 276
  • [23] The maximum Randic index of chemical trees with k pendants
    Shiu, Wai Chee
    Zhang, Lian-zhu
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4409 - 4416
  • [24] Small Randic Index Ordering of Trees with k Pendant Vertices
    Wu, Xiaoxia
    Zhang, Lian-zhu
    ARS COMBINATORIA, 2012, 103 : 289 - 304
  • [25] On (s,t)-relaxed L(1,1)-labelling of trees
    Lin, Wensong
    Zhao, Xuan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (06) : 1219 - 1227
  • [26] Harmonic-Arithmetic Index: Trees with Maximum Degrees and Comparative Analysis of Antidrugs
    Ramesh, Kalpana
    Loganathan, Shobana
    SYMMETRY-BASEL, 2025, 17 (02):
  • [27] A NOTE ON TREES WITH CONCENTRATED MAXIMUM DEGREES (VOL 42, PG 61, 1992)
    MEIR, A
    MOON, JW
    UTILITAS MATHEMATICA, 1993, 43 : 253 - 253
  • [28] MAGNETIC ORDERING CHARACTER IN NEODYMIUM SULFIDE NEAR 45 DEGREES K
    NOVIKOV, VI
    POGARSKI.AM
    SHALYT, SS
    FIZIKA TVERDOGO TELA, 1973, 15 (02): : 561 - 562
  • [29] EQUATING k MAXIMUM DEGREES IN GRAPHS WITHOUT SHORT CYCLES
    Fuerst, Maximilian
    Gentner, Michael
    Jaeger, Simon
    Rautenbach, Dieter
    Henning, Michael A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) : 841 - 853
  • [30] On the Distribution of the Maximum k-Degrees of the Binomial Random Graph
    M. E. Zhukovskii
    I. V. Rodionov
    Doklady Mathematics, 2018, 98 : 619 - 621