L(j, k)-labelling and maximum ordering-degrees for trees

被引:3
|
作者
Juan, Justie Su-Tzu [2 ]
Liu, Daphne Der-Fen [1 ]
Chen, Li-Yueh [2 ]
机构
[1] Calif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
[2] Natl Chi Nan Univ, Dept Comp Sci & Informat Engn, Nantou 54561, Taiwan
基金
美国国家科学基金会;
关键词
Channel assignment problem; Distance-two labelling; Trees; DISTANCE; 2; LABELING GRAPHS; NUMBER;
D O I
10.1016/j.dam.2009.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph. For two vertices u and v in G, we denote d(u, v) the distance between u and v. Let j, k be positive integers with j >= k. An L(j, k)-labelling for G is a function f : V(G) -> {0, 1, 2, ...} such that for any two vertices u and v, vertical bar f(u) - f(v)vertical bar is at least j if d(u, v) = 1; and is at least k if d(u, v) = 2. The span of f is the difference between the largest and the smallest numbers in f (V). The lambda(j,k)-number for G, denoted by lambda(j,k)(G), is the minimum span over all L(j, k)-labellings of G. We introduce a new parameter for a tree T, namely, the maximum ordering-degree, denoted by M(T). Combining this new parameter and the special family of infinite trees introduced by Chang and Lu (2003) [3], we present upper and lower bounds for lambda(j,k)(T) in terms of j, k, M(T), and Delta(T) (the maximum degree of T). For a special case when j >= Delta(T)k, the upper and the lower bounds are k apart. Moreover, we completely determine lambda(j,k)(T) for trees T with j >= M(T)k. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:692 / 698
页数:7
相关论文
共 50 条
  • [31] On the Distribution of the Maximum k-Degrees of the Binomial Random Graph
    Zhukovskii, M. E.
    Rodionov, I. V.
    DOKLADY MATHEMATICS, 2018, 98 (03) : 619 - 621
  • [32] L(j, k)-Labelings and L(j, k)-Edge-Labelings of Graphs
    Chen, Qin
    Lin, Wensong
    ARS COMBINATORIA, 2012, 106 : 161 - 172
  • [33] L(j,k)- and circular L(j,k)-labellings for the products of complete graphs
    Peter Che Bor Lam
    Wensong Lin
    Jianzhuan Wu
    Journal of Combinatorial Optimization, 2007, 14 : 219 - 227
  • [34] L(j,k)- and circular L(j,k)-labellings for the products of complete graphs
    Lam, Peter Che Bor
    Lin, Wensong
    Wu, Jianzhuan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (2-3) : 219 - 227
  • [36] Maximum Randić index on Trees with k-pendant Vertices
    Lian-Zhu Zhang
    Mei Lu
    Feng Tian
    Journal of Mathematical Chemistry, 2007, 41 : 161 - 171
  • [37] Approximating the complement of the maximum compatible subset of leaves of k trees
    Ganapathy, G
    Warnow, T
    APPROXIMATION ALGORITHMS FOR COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2002, 2462 : 122 - 134
  • [38] Maximum Randic index on trees with k-pendant vertices
    Zhang, Lian-Zhu
    Lu, Mei
    Tian, Feng
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2007, 41 (02) : 161 - 171
  • [39] On maximum signless Laplacian Estrada indices of k-trees
    Ning, Wenjie
    Wang, Kun
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [40] MAXIMUM ZAGREB INDICES IN THE CLASS OF k-APEX TREES
    Selenge, Tsend-Ayush
    Horoldagva, Batmend
    KOREAN JOURNAL OF MATHEMATICS, 2015, 23 (03): : 401 - 408