On the Hamilton laceability of double generalized Petersen graphs

被引:1
|
作者
Qiao, Hongwei [1 ]
Meng, Jixiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
关键词
Double generalized Petersen graphs; Hamilton-laceable; Hamilton path; Posa exchange; CAYLEY GRAPHS; AUTOMORPHISMS;
D O I
10.1016/j.disc.2021.112478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bipartite graph with bipartition A and B is said to be Hamilton-laceable if for any u is an element of A and v is an element of B there is a Hamilton path joining u and v. It is known that the double generalized Petersen graph DP(n, k) is Hamiltonian and is bipartite if and only if n is even. In this paper we show that the bipartite double generalized Petersen graph DP(n, k) is Hamilton-laceable for n >= 4. (C) 2021 Elsevier B.V. All rights reserved.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [31] On δ(k)-coloring of generalized Petersen graphs
    Ellumkalayil, Merlin Thomas
    Naduvath, Sudev
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)
  • [32] Vertex domination of generalized Petersen graphs
    Ebrahimi, B. Javad
    Jahanbakht, Nafiseh
    Mahmoodian, E. S.
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4355 - 4361
  • [33] Beyond symmetry in generalized Petersen graphs
    Garcia-Marco, Ignacio
    Knauer, Kolja
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (02) : 331 - 357
  • [34] On the domination number of the generalized Petersen graphs
    Behzad, Arash
    Behzad, Mehdi
    Praeger, Cheryl E.
    DISCRETE MATHEMATICS, 2008, 308 (04) : 603 - 610
  • [35] Component connectivity of generalized Petersen graphs
    Ferrero, Daniela
    Hanusch, Sarah
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (09) : 1940 - 1963
  • [37] Jacobsthal Numbers in Generalized Petersen Graphs
    Bruhn, Henning
    Gellert, Laura
    Guenther, Jacob
    JOURNAL OF GRAPH THEORY, 2017, 84 (02) : 146 - 157
  • [38] The decycling number of generalized Petersen graphs
    Gao, Liqing
    Xu, Xirong
    Wang, Jian
    Zhu, Dejun
    Yang, Yuansheng
    DISCRETE APPLIED MATHEMATICS, 2015, 181 : 297 - 300
  • [39] On the rna number of generalized Petersen graphs
    Sehrawat, Deepak
    Bhattacharjya, Bikash
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (03) : 451 - 466
  • [40] POWER DOMINATION IN THE GENERALIZED PETERSEN GRAPHS
    Zhao, Min
    Shan, Erfang
    Kang, Liying
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) : 695 - 712