Beyond symmetry in generalized Petersen graphs

被引:0
|
作者
Garcia-Marco, Ignacio [1 ]
Knauer, Kolja [2 ,3 ]
机构
[1] Univ La Laguna, Fac Ciencias, San Cristobal la Laguna, Spain
[2] Aix Marseille Univ, Univ Toulon, CNRS, LIS, Marseille, France
[3] Univ Barcelona, Dept Matemat & Informat, Barcelona, Spain
关键词
Generalized Petersen graph; Endomorphism; Retract; Core; Cayley graph; Monoid; CAYLEY-GRAPHS; SEMIGROUPS;
D O I
10.1007/s10801-023-01282-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is a core or unretractive if all its endomorphisms are automorphisms. Well-known examples of cores include the Petersen graph and the graph of the dodecahedron-both generalized Petersen graphs. We characterize the generalized Petersen graphs that are cores. A simple characterization of endomorphism-transitive generalized Petersen graphs follows. This extends the characterization of vertex-transitive generalized Petersen graphs due to Frucht, Graver, and Watkins and solves a problem of Fan and Xie. Moreover, we study generalized Petersen graphs that are (underlying graphs of) Cayley graphs of monoids. We show that this is the case for the Petersen graph, answering a recent mathoverflow question, for the Desargues graphs, and for the Dodecahedron-answering a question of Knauer and Knauer. Moreover, we characterize the infinite family of generalized Petersen graphs that are Cayley graphs of a monoid with generating connection set of size two. This extends Nedela and Skoviera's characterization of generalized Petersen graphs that are group Cayley graphs and complements results of Hao, Gao, and Luo.
引用
下载
收藏
页码:331 / 357
页数:27
相关论文
共 50 条
  • [1] Beyond symmetry in generalized Petersen graphs
    Ignacio García-Marco
    Kolja Knauer
    Journal of Algebraic Combinatorics, 2024, 59 : 331 - 357
  • [2] Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs
    Qin, Yan-Li
    Xia, Binzhou
    Zhou, Sanming
    JOURNAL OF GRAPH THEORY, 2021, 97 (01) : 70 - 81
  • [3] Domination in generalized Petersen graphs
    Bohdan Zelinka
    Czechoslovak Mathematical Journal, 2002, 52 : 11 - 16
  • [4] On the diameter of generalized Petersen graphs
    Loudiki, Laila
    Kchikech, Mustapha
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1035 - 1042
  • [5] GROUPS OF GENERALIZED PETERSEN GRAPHS
    FRUCHT, R
    GRAVER, JE
    WATKINS, ME
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (SEP): : 211 - &
  • [6] OPTIMAL GENERALIZED PETERSEN GRAPHS
    BEENKER, GFM
    VANLINT, JH
    PHILIPS JOURNAL OF RESEARCH, 1988, 43 (02) : 129 - 136
  • [7] The spectrum of generalized Petersen graphs
    Gera, Ralucca
    Stanica, Pantelimon
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 39 - 45
  • [8] On the reliability of generalized Petersen graphs
    Ekinci, Gulnaz Boruzanli
    Gauci, John Baptist
    DISCRETE APPLIED MATHEMATICS, 2019, 252 : 2 - 9
  • [9] Domination in generalized Petersen graphs
    Zelinka, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (01) : 11 - 16
  • [10] Generalizing the generalized Petersen graphs
    Sarazin, Marko Lovrecic
    Pacco, Walter
    Previtali, Andrea
    DISCRETE MATHEMATICS, 2007, 307 (3-5) : 534 - 543