On the Hamilton laceability of double generalized Petersen graphs

被引:1
|
作者
Qiao, Hongwei [1 ]
Meng, Jixiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
关键词
Double generalized Petersen graphs; Hamilton-laceable; Hamilton path; Posa exchange; CAYLEY GRAPHS; AUTOMORPHISMS;
D O I
10.1016/j.disc.2021.112478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bipartite graph with bipartition A and B is said to be Hamilton-laceable if for any u is an element of A and v is an element of B there is a Hamilton path joining u and v. It is known that the double generalized Petersen graph DP(n, k) is Hamiltonian and is bipartite if and only if n is even. In this paper we show that the bipartite double generalized Petersen graph DP(n, k) is Hamilton-laceable for n >= 4. (C) 2021 Elsevier B.V. All rights reserved.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [41] LENGTH OF CYCLES IN GENERALIZED PETERSEN GRAPHS
    Zhang, Z. -B.
    Chen, Z.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 1093 - 1100
  • [42] The isomorphism classes of the generalized Petersen graphs
    Steimle, Alice
    Staton, William
    DISCRETE MATHEMATICS, 2009, 309 (01) : 231 - 237
  • [43] Beyond symmetry in generalized Petersen graphs
    Ignacio García-Marco
    Kolja Knauer
    Journal of Algebraic Combinatorics, 2024, 59 : 331 - 357
  • [44] Edge Resolvability in Generalized Petersen Graphs
    Iqbal, Tanveer
    Bokhary, Syed Ahtsham Ul Haq
    Hilali, Shreefa O.
    Alhagyan, Mohammed
    Gargouri, Ameni
    Azhar, Muhammad Naeem
    SYMMETRY-BASEL, 2023, 15 (09):
  • [45] INJECTIVE COLORING OF GENERALIZED PETERSEN GRAPHS
    Li, Zepeng
    Shao, Zehui
    Zhu, Enqiang
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (01): : 1 - 12
  • [46] ON THE TOUGHNESS OF SOME GENERALIZED PETERSEN GRAPHS
    FERLAND, K
    ARS COMBINATORIA, 1993, 36 : 65 - 88
  • [47] The Independence Number for the Generalized Petersen Graphs
    Fox, Joseph
    Gera, Ralucca
    Stanica, Pantelimon
    ARS COMBINATORIA, 2012, 103 : 439 - 451
  • [48] CIRCULAR WIRELENGTH OF GENERALIZED PETERSEN GRAPHS
    Rajasingh, Indra
    Arockiaraj, M.
    Rajan, Bharati
    Manuel, Paul
    JOURNAL OF INTERCONNECTION NETWORKS, 2011, 12 (04) : 319 - 335
  • [49] Independence number of generalized Petersen graphs
    Besharati, Nazli
    Ebrahimi, J. B.
    Azadi, A.
    ARS COMBINATORIA, 2016, 124 : 239 - 255
  • [50] The Double Roman Domination Numbers of Generalized Petersen Graphs P(n, 2)
    Jiang, Huiqin
    Wu, Pu
    Shao, Zehui
    Rao, Yongsheng
    Liu, Jia-Bao
    MATHEMATICS, 2018, 6 (10)