Curvelets and Fourier integral operators

被引:55
|
作者
Candès, E [1 ]
Demanet, L [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1016/S1631-073X(03)00095-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent body of work introduced new tight-frames of curvelets E. Cantles, D. Donoho, in: (i) Curvelets - a suprisingly effective nonadaptive representation for objects with edges (A. Cohen, C. Rabut, L. Schumaker (Eds.)), Vanderbilt University Press, Nashville, 2000, pp. 105-120; (ii) http://www.acm.caltech.edu/similar toemmanuel/publications.html, 2002 to address key problems in approximation theory and image processing. This paper shows that curvelets essentially provide optimally sparse representations of Fourier Integral Operators. (C) 2003 Academic des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:395 / 398
页数:4
相关论文
共 50 条
  • [41] Approximation of Fourier Integral Operators by Gabor Multipliers
    Cordero, Elena
    Groechenig, Karlheinz
    Nicola, Fabio
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (04) : 661 - 684
  • [42] Boundedness of Fourier integral operators on Hardy spaces
    Peloso, Marco M.
    Secco, Silvia
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2008, 51 : 443 - 463
  • [43] REGULARITY PROPERTIES OF FOURIER INTEGRAL-OPERATORS
    SEEGER, A
    SOGGE, CD
    STEIN, EM
    [J]. ANNALS OF MATHEMATICS, 1991, 134 (02) : 231 - 251
  • [44] Representation of Fourier Integral Operators Using Shearlets
    Kanghui Guo
    Demetrio Labate
    [J]. Journal of Fourier Analysis and Applications, 2008, 14 : 327 - 371
  • [45] Multilinear Fourier integral operators on modulation spaces
    Dasgupta, Aparajita
    Mohan, Lalit
    Mondal, Shyam Swarup
    [J]. FORUM MATHEMATICUM, 2024, 36 (05) : 1393 - 1410
  • [46] ON INTEGRAL OPERATORS GENERATED BY THE FOURIER TRANSFORM AND A REFLECTION
    Castro, L. P.
    Guerra, R. C.
    Tuan, N. M.
    [J]. MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2015, 66 : 7 - 31
  • [47] On Lp-boundedness of Fourier Integral Operators
    Yang, Jie
    Wang, Guangqing
    Chen, Wenyi
    [J]. POTENTIAL ANALYSIS, 2022, 57 (02) : 167 - 179
  • [48] ON A CLASS OF h-FOURIER INTEGRAL OPERATORS
    Harrat, Chahrazed
    Senoussaoui, Abderrahmane
    [J]. DEMONSTRATIO MATHEMATICA, 2014, 47 (03) : 595 - 606
  • [49] Contact degree and the index of Fourier integral operators
    Epstein, C
    Melrose, R
    [J]. MATHEMATICAL RESEARCH LETTERS, 1998, 5 (03) : 363 - 381
  • [50] Characterizations of Hardy spaces for Fourier integral operators
    Rozendaal, Jan
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (05) : 1717 - 1745