Curvelets and Fourier integral operators

被引:56
|
作者
Candès, E [1 ]
Demanet, L [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1016/S1631-073X(03)00095-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent body of work introduced new tight-frames of curvelets E. Cantles, D. Donoho, in: (i) Curvelets - a suprisingly effective nonadaptive representation for objects with edges (A. Cohen, C. Rabut, L. Schumaker (Eds.)), Vanderbilt University Press, Nashville, 2000, pp. 105-120; (ii) http://www.acm.caltech.edu/similar toemmanuel/publications.html, 2002 to address key problems in approximation theory and image processing. This paper shows that curvelets essentially provide optimally sparse representations of Fourier Integral Operators. (C) 2003 Academic des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:395 / 398
页数:4
相关论文
共 50 条
  • [31] Wiener algebras of Fourier integral operators
    Cordero, Elena
    Groechenig, Karlheinz
    Nicola, Fabio
    Rodino, Luigi
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (02): : 219 - 233
  • [32] The Endpoint Estimate for Fourier Integral Operators
    Guangqing Wang
    Jie Yang
    Wenyi Chen
    Acta Mathematica Scientia, 2021, 41 : 426 - 436
  • [33] ROUGH PSEUDODIFFERENTIAL OPERATORS ON HARDY SPACES FOR FOURIER INTEGRAL OPERATORS
    Rozendaal, Jan
    JOURNAL D ANALYSE MATHEMATIQUE, 2023, 149 (01): : 135 - 165
  • [34] Rough pseudodifferential operators on Hardy spaces for Fourier integral operators
    Jan Rozendaal
    Journal d'Analyse Mathématique, 2023, 149 : 135 - 165
  • [35] Representation of Fourier integral operators using shearlets
    Guo, Kanghui
    Labate, Demetrio
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (03) : 327 - 371
  • [36] FOURIER INTEGRAL-OPERATORS WITH FOLD SINGULARITIES
    GREENLEAF, A
    SEEGER, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1994, 455 : 35 - 56
  • [37] ESTIMATES FOR INTEGRAL FOURIER OPERATORS WITH COMPLEX PHASE
    DANILOV, VG
    DZHEMESYUK, IA
    MATHEMATICAL NOTES, 1982, 32 (3-4) : 761 - 771
  • [38] FOURIER INTEGRAL-OPERATORS AND THE CANONICAL OPERATOR
    NAZAIKINSKII, VE
    OSHMYAN, VG
    STERNIN, BY
    SHATALOV, VE
    RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (02) : 93 - 161
  • [39] LP BOUNDEDNESS OF FOURIER INTEGRAL-OPERATORS
    BEALS, RM
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 38 (264) : R5 - 57
  • [40] On Lp-boundedness of Fourier Integral Operators
    Jie Yang
    Guangqing Wang
    Wenyi Chen
    Potential Analysis, 2022, 57 : 167 - 179