On Lp-boundedness of Fourier Integral Operators

被引:0
|
作者
Jie Yang
Guangqing Wang
Wenyi Chen
机构
[1] Xinjiang University,College of Mathematics and System Science
[2] Fuyang Normal University,School of Mathematics and Statistics
[3] Wuhan University,School of Mathematics and Statistics
来源
Potential Analysis | 2022年 / 57卷
关键词
Fourier integral operators; Rough amplitude; Phase function; Seeger-Sogge-Stein decomposition; 42B20; 42B37;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we get an Lp boundedness of Fourier integral operators with rough amplitude a∈L∞Sϱm,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a\in L^{\infty } S^{m}_{\varrho },~$\end{document} and phase φ∈L∞Φ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varphi \in L^{\infty }{\Phi }^{2}$\end{document} for 1≤p≤+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq p\leq +\infty $\end{document}. This is an improvement of the corresponding results in Dos Santos Ferreira and Staubach (Mem. Amer. Math. Soc. 229, 1074, 2014).
引用
收藏
页码:167 / 179
页数:12
相关论文
共 50 条