MULTISCALE DISCRETE APPROXIMATION OF FOURIER INTEGRAL OPERATORS

被引:10
|
作者
Andersson, Fredrik [1 ]
de Hoop, Maarten V. [2 ]
Wendt, Herwig [2 ]
机构
[1] Lund Univ, Lund Inst Technol, Ctr Math Sci, Math LTH, S-22100 Lund, Sweden
[2] Purdue Univ, Dept Math, CCAM, W Lafayette, IN 47907 USA
来源
MULTISCALE MODELING & SIMULATION | 2012年 / 10卷 / 01期
关键词
Fourier integral operators; multiscale computations; wave packets; dyadic parabolic decomposition; separated representation; operator compression; reflection seismology; SPHEROIDAL WAVE-FUNCTIONS; SEISMIC INVERSE SCATTERING; EIGENVALUE DISTRIBUTION; MULTIFRACTAL FORMALISM; COMPUTATION; TRANSFORMS; ALGORITHMS; EQUATIONS; IMAGE; TIME;
D O I
10.1137/100808174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a discretization and computational procedures for approximation of the action of Fourier integral operators the canonical relations of which are graphs. Such operators appear, for instance, in the formulation of imaging and inverse scattering of seismic reflection data. Our discretization and algorithms are based on a multiscale low-rank expansion of the action of Fourier integral operators using the dyadic parabolic decomposition of phase space and on explicit constructions of low-rank separated representations using prolate spheroidal wave functions, which directly reflect the geometry of such operators. The discretization and computational procedures connect to the discrete almost symmetric wave packet transform. Numerical wave propagation and imaging examples illustrate our computational procedures.
引用
收藏
页码:111 / 145
页数:35
相关论文
共 50 条