Scaffolding proteins guide the evolution of algal light harvesting antennas

被引:17
|
作者
Rathbone, Harry W. [1 ]
Michie, Katharine A. [1 ,2 ]
Landsberg, Michael J. [3 ]
Green, Beverley R. [4 ]
Curmi, Paul M. G. [1 ]
机构
[1] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
[2] Univ New South Wales, Mark Wainwright Analyt Ctr, Sydney, NSW 2052, Australia
[3] Univ Queensland, Sch Chem & Mol Biosci, St Lucia, Qld, Australia
[4] Univ British Columbia, Bot Dept, Vancouver, BC V6N 3T7, Canada
基金
澳大利亚研究理事会;
关键词
MULTIPLE SEQUENCE ALIGNMENT; CRYSTALLOGRAPHIC STRUCTURE; ENERGY-TRANSFER; MODEL; SUBUNITS; PHYCOERYTHRIN; PHYCOCYANIN; DATABASE; SEARCH; PHENIX;
D O I
10.1038/s41467-021-22128-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photosynthetic organisms have developed diverse antennas composed of chromophorylated proteins to increase photon capture. Cryptophyte algae acquired their photosynthetic organelles (plastids) from a red alga by secondary endosymbiosis. Cryptophytes lost the primary red algal antenna, the red algal phycobilisome, replacing it with a unique antenna composed of alpha beta protomers, where the beta subunit originates from the red algal phycobilisome. The origin of the cryptophyte antenna, particularly the unique alpha subunit, is unknown. Here we show that the cryptophyte antenna evolved from a complex between a red algal scaffolding protein and phycoerythrin beta. Published cryo-EM maps for two red algal phycobilisomes contain clusters of unmodelled density homologous to the cryptophyte-alpha beta protomer. We modelled these densities, identifying a new family of scaffolding proteins related to red algal phycobilisome linker proteins that possess multiple copies of a cryptophyte-alpha-like domain. These domains bind to, and stabilise, a conserved hydrophobic surface on phycoerythrin beta, which is the same binding site for its primary partner in the red algal phycobilisome, phycoerythrin alpha. We propose that after endosymbiosis these scaffolding proteins outcompeted the primary binding partner of phycoerythrin beta, resulting in the demise of the red algal phycobilisome and emergence of the cryptophyte antenna. Cryptophytes acquired plastids from red algae but replaced the light-harvesting phycobilisome with a unique cryptophyte antenna. Here via analysis of phycobilisome cryo-EM structures, Rathbone et al. propose that the alpha subunit of the cryptophyte antenna originated from phycobilisome linker proteins
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Absorption anisotropy of main light-harvesting antennas of green photosynthetic bacteria
    Nakabayashi, Shosuke
    BIOPHYSICAL JOURNAL, 2007, : 505A - 505A
  • [42] Evolution under the sun: optimizing light harvesting in photosynthesis
    Ruban, Alexander V.
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (01) : 7 - 23
  • [43] The Unique Light-Harvesting System of the Algal Phycobilisome: Structure, Assembly Components, and Functions
    Li, Xiang
    Hou, Wenwen
    Lei, Jiaxi
    Chen, Hui
    Wang, Qiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
  • [44] LIGHT-QUALITY AND IRRADIANCE EFFECTS ON PIGMENTS, LIGHT-HARVESTING PROTEINS AND RUBISCO ACTIVITY IN A CHLOROPHYLL-HARVESTING AND LIGHT-HARVESTING-DEFICIENT SOYBEAN MUTANT
    ESKINS, K
    JIANG, CZ
    SHIBLES, R
    PHYSIOLOGIA PLANTARUM, 1991, 83 (01) : 47 - 53
  • [45] Major intrinsic light-harvesting protein of Amphidinium. Characterization and relation to other light-harvesting proteins
    Hiller, Roger G.
    Wrench, Pamela M.
    Gooley, Andrew P.
    Shoebridge, Grant
    Breton, Jacques
    Photochemistry and Photobiology, 1993, 57 (01)
  • [46] THE LIGHT-HARVESTING CHLOROPHYLL A/B BINDING-PROTEINS
    JANSSON, S
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1184 (01): : 1 - 19
  • [47] Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls
    Roberto Bassi
    Stefano Caffarri
    Photosynthesis Research, 2000, 64 : 243 - 256
  • [48] Photoprotective conformational dynamics of photosynthetic light-harvesting proteins
    Manna, Premashis
    Schlau-Cohen, Gabriela S.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2022, 1863 (04):
  • [49] Shaping excitons in light-harvesting proteins through nanoplasmonics
    Caprasecca, Stefano
    Corni, Stefano
    Mennucci, Benedetta
    CHEMICAL SCIENCE, 2018, 9 (29) : 6219 - 6227
  • [50] Dinoflagellate light-harvesting proteins: Genes, structure and reconstitution
    Hiller, RG
    Broughton, MJ
    Wrench, PM
    Sharples, FP
    Miller, DJ
    Catmull, J
    CHLOROPLAST: FROM MOLECULAR BIOLOGY TO BIOTECHNOLOGY, 1999, 64 : 3 - 10