Scaffolding proteins guide the evolution of algal light harvesting antennas

被引:17
|
作者
Rathbone, Harry W. [1 ]
Michie, Katharine A. [1 ,2 ]
Landsberg, Michael J. [3 ]
Green, Beverley R. [4 ]
Curmi, Paul M. G. [1 ]
机构
[1] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
[2] Univ New South Wales, Mark Wainwright Analyt Ctr, Sydney, NSW 2052, Australia
[3] Univ Queensland, Sch Chem & Mol Biosci, St Lucia, Qld, Australia
[4] Univ British Columbia, Bot Dept, Vancouver, BC V6N 3T7, Canada
基金
澳大利亚研究理事会;
关键词
MULTIPLE SEQUENCE ALIGNMENT; CRYSTALLOGRAPHIC STRUCTURE; ENERGY-TRANSFER; MODEL; SUBUNITS; PHYCOERYTHRIN; PHYCOCYANIN; DATABASE; SEARCH; PHENIX;
D O I
10.1038/s41467-021-22128-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photosynthetic organisms have developed diverse antennas composed of chromophorylated proteins to increase photon capture. Cryptophyte algae acquired their photosynthetic organelles (plastids) from a red alga by secondary endosymbiosis. Cryptophytes lost the primary red algal antenna, the red algal phycobilisome, replacing it with a unique antenna composed of alpha beta protomers, where the beta subunit originates from the red algal phycobilisome. The origin of the cryptophyte antenna, particularly the unique alpha subunit, is unknown. Here we show that the cryptophyte antenna evolved from a complex between a red algal scaffolding protein and phycoerythrin beta. Published cryo-EM maps for two red algal phycobilisomes contain clusters of unmodelled density homologous to the cryptophyte-alpha beta protomer. We modelled these densities, identifying a new family of scaffolding proteins related to red algal phycobilisome linker proteins that possess multiple copies of a cryptophyte-alpha-like domain. These domains bind to, and stabilise, a conserved hydrophobic surface on phycoerythrin beta, which is the same binding site for its primary partner in the red algal phycobilisome, phycoerythrin alpha. We propose that after endosymbiosis these scaffolding proteins outcompeted the primary binding partner of phycoerythrin beta, resulting in the demise of the red algal phycobilisome and emergence of the cryptophyte antenna. Cryptophytes acquired plastids from red algae but replaced the light-harvesting phycobilisome with a unique cryptophyte antenna. Here via analysis of phycobilisome cryo-EM structures, Rathbone et al. propose that the alpha subunit of the cryptophyte antenna originated from phycobilisome linker proteins
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Rectifying antennas for energy harvesting from the microwaves to visible light: A review
    Reynaud, C. A.
    Duche, D.
    Simon, J. -J.
    Sanchez-Adaime, E.
    Margeat, O.
    Ackermann, J.
    Jangid, V.
    Lebouin, C.
    Brunel, D.
    Dumur, F.
    Gigmes, D.
    Berginc, G.
    Nijhuis, C. A.
    Escoubas, L.
    PROGRESS IN QUANTUM ELECTRONICS, 2020, 72
  • [32] Supramolecular light-harvesting systems utilizing tetraphenylethylene chromophores as antennas
    Zhang, Qiaona
    Dang, Xiaoman
    Cui, Fengyao
    Xiao, Tangxin
    CHEMICAL COMMUNICATIONS, 2024, 60 (74) : 10064 - 10079
  • [33] Artificial photosynthetic reaction centers coupled to light-harvesting antennas
    Ghosh, Pulak Kumar
    Smirnov, Anatoly Yu.
    Nori, Franco
    PHYSICAL REVIEW E, 2011, 84 (06):
  • [34] Characterization of Self Assembled Peptide Porphyrin Complexes as Light Harvesting Antennas
    Warner, Matthew
    Hagens, Laura
    Reca, Michael
    Kuciauskas, Darius
    Caputo, Gregory A.
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 54 - 54
  • [35] The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs):: was the harvesting of light their primary function?
    Montané, MH
    Kloppstech, K
    GENE, 2000, 258 (1-2) : 1 - 8
  • [36] Proteomics of Chlamydomonas reinhardtii light-harvesting proteins
    Stauber, EJ
    Fink, A
    Markert, C
    Kruse, O
    Johanningmeier, U
    Hippler, M
    EUKARYOTIC CELL, 2003, 2 (05) : 978 - 994
  • [37] THE MAJOR INTRINSIC LIGHT-HARVESTING PROTEIN OF AMPHIDINIUM - CHARACTERIZATION AND RELATION TO OTHER LIGHT-HARVESTING PROTEINS
    HILLER, RG
    WRENCH, PM
    GOOLEY, AP
    SHOEBRIDGE, G
    BRETON, J
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1993, 57 (01) : 125 - 131
  • [38] The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution
    Pinnola, Alberta
    JOURNAL OF EXPERIMENTAL BOTANY, 2019, 70 (20) : 5527 - 5535
  • [39] Synthesis of artificial light harvesting antennas for the study of excess energy dissipation in photosynthesis
    Pillai, Smitha T.
    Berera, Rudi
    Kennis, John
    Gust, Devens
    Moore, Thomas A.
    Moore, Ana L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [40] Rapid energy transfer in a dendrimer having π-conjugated light-harvesting antennas
    Akai, I.
    Miyanari, K.
    Shimamoto, T.
    Fujii, A.
    Nakao, H.
    Okada, A.
    Kanemoto, K.
    Karasawa, T.
    Hashimoto, H.
    Ishida, A.
    Yamada, A.
    Katayama, I.
    Takeda, J.
    Kimura, M.
    NEW JOURNAL OF PHYSICS, 2008, 10