Scaffolding proteins guide the evolution of algal light harvesting antennas

被引:17
|
作者
Rathbone, Harry W. [1 ]
Michie, Katharine A. [1 ,2 ]
Landsberg, Michael J. [3 ]
Green, Beverley R. [4 ]
Curmi, Paul M. G. [1 ]
机构
[1] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
[2] Univ New South Wales, Mark Wainwright Analyt Ctr, Sydney, NSW 2052, Australia
[3] Univ Queensland, Sch Chem & Mol Biosci, St Lucia, Qld, Australia
[4] Univ British Columbia, Bot Dept, Vancouver, BC V6N 3T7, Canada
基金
澳大利亚研究理事会;
关键词
MULTIPLE SEQUENCE ALIGNMENT; CRYSTALLOGRAPHIC STRUCTURE; ENERGY-TRANSFER; MODEL; SUBUNITS; PHYCOERYTHRIN; PHYCOCYANIN; DATABASE; SEARCH; PHENIX;
D O I
10.1038/s41467-021-22128-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photosynthetic organisms have developed diverse antennas composed of chromophorylated proteins to increase photon capture. Cryptophyte algae acquired their photosynthetic organelles (plastids) from a red alga by secondary endosymbiosis. Cryptophytes lost the primary red algal antenna, the red algal phycobilisome, replacing it with a unique antenna composed of alpha beta protomers, where the beta subunit originates from the red algal phycobilisome. The origin of the cryptophyte antenna, particularly the unique alpha subunit, is unknown. Here we show that the cryptophyte antenna evolved from a complex between a red algal scaffolding protein and phycoerythrin beta. Published cryo-EM maps for two red algal phycobilisomes contain clusters of unmodelled density homologous to the cryptophyte-alpha beta protomer. We modelled these densities, identifying a new family of scaffolding proteins related to red algal phycobilisome linker proteins that possess multiple copies of a cryptophyte-alpha-like domain. These domains bind to, and stabilise, a conserved hydrophobic surface on phycoerythrin beta, which is the same binding site for its primary partner in the red algal phycobilisome, phycoerythrin alpha. We propose that after endosymbiosis these scaffolding proteins outcompeted the primary binding partner of phycoerythrin beta, resulting in the demise of the red algal phycobilisome and emergence of the cryptophyte antenna. Cryptophytes acquired plastids from red algae but replaced the light-harvesting phycobilisome with a unique cryptophyte antenna. Here via analysis of phycobilisome cryo-EM structures, Rathbone et al. propose that the alpha subunit of the cryptophyte antenna originated from phycobilisome linker proteins
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Tunable phenylenevinylene dimer and trimer molecules for light harvesting antennas
    Bhuiyan, M. Delower H.
    Winch, N. M.
    Smith, G. J.
    Breukers, R. D.
    Raymond, S. G.
    Kay, A. J.
    Smith, T. A.
    PHOTONICS FOR SOLAR ENERGY SYSTEMS V, 2014, 9140
  • [22] ENERGY-TRANSFER IN PHOTOSYNTHETIC LIGHT-HARVESTING ANTENNAS
    SUNDSTROM, V
    VANGRONDELLE, R
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1990, 7 (08) : 1595 - 1603
  • [23] Evolution of light-harvesting complex proteins from Chl c-containing algae
    Hoffman, Gabriel E.
    Virginia Sanchez-Puerta, M.
    Delwiche, Charles F.
    BMC EVOLUTIONARY BIOLOGY, 2011, 11
  • [24] Evolution of light-harvesting complex proteins from Chl c-containing algae
    Gabriel E Hoffman
    M Virginia Sanchez-Puerta
    Charles F Delwiche
    BMC Evolutionary Biology, 11
  • [25] Conformational flexibility of β-arrestins - How these scaffolding proteins guide and transform the functionality of GPCRs
    Haider, Raphael S.
    Reichel, Mona
    Matthees, Edda S. F.
    Hoffmann, Carsten
    BIOESSAYS, 2023, 45 (08)
  • [26] An ancient light-harvesting protein is critical for the regulation of algal photosynthesis
    Graham Peers
    Thuy B. Truong
    Elisabeth Ostendorf
    Andreas Busch
    Dafna Elrad
    Arthur R. Grossman
    Michael Hippler
    Krishna K. Niyogi
    Nature, 2009, 462 : 518 - 521
  • [27] An ancient light-harvesting protein is critical for the regulation of algal photosynthesis
    Peers, Graham
    Truong, Thuy B.
    Ostendorf, Elisabeth
    Busch, Andreas
    Elrad, Dafna
    Grossman, Arthur R.
    Hippler, Michael
    Niyogi, Krishna K.
    NATURE, 2009, 462 (7272) : 518 - U215
  • [28] Electromagnetic optimization of light-harvesting proteins
    Etchegoin, P
    Maher, RC
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [29] Sol-gel entrapped light harvesting antennas: immobilization and stabilization of chlorosomes for energy harvesting
    O'Dell, William B.
    Beatty, Kayla J.
    Tang, Joseph Kuo-Hsiang
    Blankenship, Robert E.
    Urban, Volker S.
    O'Neill, Hugh
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (42) : 22582 - 22591
  • [30] Assembly of eukaryotic photosystem II with diverse light-harvesting antennas
    Cao, Peng
    Pan, Xiaowei
    Su, Xiaodong
    Liu, Zhenfeng
    Li, Mei
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 63 : 49 - 57