Estimation and testing for the integer-valued threshold autoregressive models based on negative binomial thinning

被引:11
|
作者
Wang, Xiaohong [1 ,2 ]
Wang, Dehui [1 ]
Yang, Kai [3 ]
Xu, Da [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun, Jilin, Peoples R China
[2] Jilin Normal Univ, Coll Math, Siping, Jilin, Peoples R China
[3] Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Threshold autoregressive processes; Change point autoregressive processes; Negative binomial thinning; Empirical likelihood; Nonlinearity test; EMPIRICAL LIKELIHOOD; TIME-SERIES; COUNTS;
D O I
10.1080/03610918.2019.1586929
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To better describe the characteristics of time series of counts such as overdispersion or structural change, in this paper, we redefines the integer-valued threshold autoregressive models based on negative binomial thinning (NBTINAR(1)) under a weaker condition that the expectation of the innovations is finite. Parameters' point estimation and interval estimation problems are considered. A method to test the nonlinearity of the data is provided. As an illustration, we conduct a simulation study and empirical analysis of Pittsburgh crime data sets.
引用
下载
收藏
页码:1622 / 1644
页数:23
相关论文
共 50 条
  • [21] Multivariate threshold integer-valued autoregressive processes with explanatory variables
    Yang, Kai
    Xu, Nuo
    Li, Han
    Zhao, Yiwei
    Dong, Xiaogang
    APPLIED MATHEMATICAL MODELLING, 2023, 124 : 142 - 166
  • [22] Integer-valued autoregressive models for counts showing underdispersion
    Weiss, Christian H.
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (09) : 1931 - 1948
  • [23] ON SOME INTEGER-VALUED AUTOREGRESSIVE MOVING AVERAGE MODELS
    ALY, EEAA
    BOUZAR, N
    JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 50 (01) : 132 - 151
  • [24] Integer-Valued Self-Exciting Threshold Autoregressive Processes
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (15) : 2717 - 2737
  • [25] Bivariate first-order random coefficient integer-valued autoregressive processes based on modified negative binomial operator
    Fan, Yixuan
    Wang, Dehui
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [26] Minimum Density Power Divergence Estimator for Negative Binomial Integer-Valued GARCH Models
    Xiong, Lanyu
    Zhu, Fukang
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (02) : 233 - 261
  • [27] Minimum Density Power Divergence Estimator for Negative Binomial Integer-Valued GARCH Models
    Lanyu Xiong
    Fukang Zhu
    Communications in Mathematics and Statistics, 2022, 10 : 233 - 261
  • [28] Some geometric mixed integer-valued autoregressive (INAR) models
    Nastic, Aleksandar S.
    Ristic, Miroslav M.
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (04) : 805 - 811
  • [29] A Binomial Integer-Valued ARCH Model
    Ristic, Miroslav M.
    Weiss, Christian H.
    Janjic, Ana D.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (02): : 1 - 21
  • [30] Two classes of dynamic binomial integer-valued ARCH models
    Chen, Huaping
    Li, Qi
    Zhu, Fukang
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2020, 34 (04) : 685 - 711