Two-Threshold-Variable Integer-Valued Autoregressive Model

被引:3
|
作者
Zhang, Jiayue [1 ]
Zhu, Fukang [1 ]
Chen, Huaping [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
关键词
two-threshold-variable; time series of counts; integer-valued autoregression; conditional least squares estimate;
D O I
10.3390/math11163586
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the past, most threshold models considered a single threshold variable. However, for some practical applications, models with two threshold variables may be needed. In this paper, we propose a two-threshold-variable integer-valued autoregressive model based on the binomial thinning operator and discuss some of its basic properties, including the mean, variance, strict stationarity, and ergodicity. We consider the conditional least squares (CLS) estimation and discuss the asymptotic normality of the CLS estimator under the known and unknown threshold values. The performances of the CLS estimator are compared via simulation studies. In addition, two real data sets are considered to underline the superior performance of the proposed model.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Threshold integer-valued autoregressive model with serially dependent innovation
    Kang, Yao
    Sheng, Danshu
    Yue, Jinmei
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (17) : 3826 - 3863
  • [2] On bivariate threshold Poisson integer-valued autoregressive processes
    Yang, Kai
    Zhao, Yiwei
    Li, Han
    Wang, Dehui
    METRIKA, 2023, 86 (08) : 931 - 963
  • [3] On bivariate threshold Poisson integer-valued autoregressive processes
    Kai Yang
    Yiwei Zhao
    Han Li
    Dehui Wang
    Metrika, 2023, 86 : 931 - 963
  • [4] A Periodic Bivariate Integer-Valued Autoregressive Model
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    DYNAMICS, GAMES AND SCIENCE, 2015, 1 : 455 - 477
  • [5] A geometric minification integer-valued autoregressive model
    Aleksic, Milena S.
    Ristic, Miroslav M.
    APPLIED MATHEMATICAL MODELLING, 2021, 90 : 265 - 280
  • [6] Bayesian generalizations of the integer-valued autoregressive model
    C. Marques F., Paulo
    Graziadei, Helton
    Lopes, Hedibert F.
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (02) : 336 - 356
  • [7] Multivariate threshold integer-valued autoregressive processes with explanatory variables
    Yang, Kai
    Xu, Nuo
    Li, Han
    Zhao, Yiwei
    Dong, Xiaogang
    APPLIED MATHEMATICAL MODELLING, 2023, 124 : 142 - 166
  • [8] Integer-Valued Self-Exciting Threshold Autoregressive Processes
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (15) : 2717 - 2737
  • [9] A MIXTURE INTEGER-VALUED AUTOREGRESSIVE MODEL WITH A STRUCTURAL BREAK
    Popovic, Predrag M.
    Ristic, Miroslav M.
    Stojanovic, Milena S.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2024, 39 (01): : 99 - 122
  • [10] A non-stationary integer-valued autoregressive model
    Kim, Hee-Young
    Park, Yousung
    STATISTICAL PAPERS, 2008, 49 (03) : 485 - 502