Estimation and testing for the integer-valued threshold autoregressive models based on negative binomial thinning

被引:11
|
作者
Wang, Xiaohong [1 ,2 ]
Wang, Dehui [1 ]
Yang, Kai [3 ]
Xu, Da [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun, Jilin, Peoples R China
[2] Jilin Normal Univ, Coll Math, Siping, Jilin, Peoples R China
[3] Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Threshold autoregressive processes; Change point autoregressive processes; Negative binomial thinning; Empirical likelihood; Nonlinearity test; EMPIRICAL LIKELIHOOD; TIME-SERIES; COUNTS;
D O I
10.1080/03610918.2019.1586929
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To better describe the characteristics of time series of counts such as overdispersion or structural change, in this paper, we redefines the integer-valued threshold autoregressive models based on negative binomial thinning (NBTINAR(1)) under a weaker condition that the expectation of the innovations is finite. Parameters' point estimation and interval estimation problems are considered. A method to test the nonlinearity of the data is provided. As an illustration, we conduct a simulation study and empirical analysis of Pittsburgh crime data sets.
引用
收藏
页码:1622 / 1644
页数:23
相关论文
共 50 条
  • [41] Diagnostic checks for integer-valued autoregressive models using expected residuals
    Yousung Park
    Hee-Young Kim
    Statistical Papers, 2012, 53 : 951 - 970
  • [42] First-order random coefficients integer-valued threshold autoregressive processes
    Han Li
    Kai Yang
    Shishun Zhao
    Dehui Wang
    AStA Advances in Statistical Analysis, 2018, 102 : 305 - 331
  • [43] First-order random coefficients integer-valued threshold autoregressive processes
    Li, Han
    Yang, Kai
    Zhao, Shishun
    Wang, Dehui
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2018, 102 (03) : 305 - 331
  • [44] Asymptotic negative binomial quasi-likelihood inference for periodic integer-valued time series models
    Almohaimeed, Bader S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (02) : 587 - 606
  • [45] Binomial rings, integer-valued polynomials, and λ-rings
    Elliott, Jesse
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 207 (01) : 165 - 185
  • [46] A multiplicative thinning-based integer-valued GARCH model
    Aknouche, Abdelhakim
    Scotto, Manuel G.
    JOURNAL OF TIME SERIES ANALYSIS, 2024, 45 (01) : 4 - 26
  • [47] Random environment integer-valued autoregressive process
    Nastic, Aleksandar S.
    Laketa, Petra N.
    Ristic, Miroslav M.
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (02) : 267 - 287
  • [48] A Periodic Bivariate Integer-Valued Autoregressive Model
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    DYNAMICS, GAMES AND SCIENCE, 2015, 1 : 455 - 477
  • [49] A geometric minification integer-valued autoregressive model
    Aleksic, Milena S.
    Ristic, Miroslav M.
    APPLIED MATHEMATICAL MODELLING, 2021, 90 : 265 - 280
  • [50] Bayesian generalizations of the integer-valued autoregressive model
    C. Marques F., Paulo
    Graziadei, Helton
    Lopes, Hedibert F.
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (02) : 336 - 356