A DNA Computing Model on Triple-Stranded for Minimum Spanning Tree Problem

被引:0
|
作者
Yin, Zhixiang [1 ]
Sun, Xia [1 ]
Xu, Feng [1 ]
Fang, Xianwen [1 ]
Xu, Hui [2 ]
机构
[1] Anhui Univ Sci & Technol, Sch Sci, Huainan, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Comp Sci & Engn, Huainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Triple-stranded DNA; Antigen intermediary; Minimum spanning tree problem;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single-strand DNA can match with homologous double-stranded into a triple-stranded structure mediated by RecA protein. The paper provides a triple-stranded DNA computing model for minimum spanning tree problem. DNA fragments corresponding to edges are coded by double-stranded DNA, wrong hybridization does not take place and hairpin structure does not form. The single-strand DNA probe is bond with RecA protein, so the rate of wrong solution will reduce. And in this way, encoding complexity and the errors in computation will be decreased.
引用
收藏
页码:549 / 551
页数:3
相关论文
共 50 条
  • [21] On the minimum label spanning tree problem
    Krumke, SO
    Wirth, HC
    INFORMATION PROCESSING LETTERS, 1998, 66 (02) : 81 - 85
  • [22] ON THE HISTORY OF THE MINIMUM SPANNING TREE PROBLEM
    GRAHAM, RL
    HELL, P
    ANNALS OF THE HISTORY OF COMPUTING, 1985, 7 (01): : 43 - 57
  • [23] ON THE GENERALIZED MINIMUM SPANNING TREE PROBLEM
    MYUNG, YS
    LEE, CH
    TCHA, DW
    NETWORKS, 1995, 26 (04) : 231 - 241
  • [24] A constrained minimum spanning tree problem
    Chen, GT
    Zhang, GC
    COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (09) : 867 - 875
  • [25] The minimum risk spanning tree problem
    Chen, Xujin
    Hu, Jie
    Hu, Xiaodong
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2007, 4616 : 81 - +
  • [26] THE PROBABILISTIC MINIMUM SPANNING TREE PROBLEM
    BERTSIMAS, DJ
    NETWORKS, 1990, 20 (03) : 245 - 275
  • [27] THE QUADRATIC MINIMUM SPANNING TREE PROBLEM
    ASSAD, A
    XU, WX
    NAVAL RESEARCH LOGISTICS, 1992, 39 (03) : 399 - 417
  • [28] The Minimum Moving Spanning Tree Problem
    Akitaya H.A.
    Biniaz A.
    Bose P.
    De Carufel J.-L.
    Maheshwari A.
    da Silveira L.F.S.X.
    Smid M.
    Journal of Graph Algorithms and Applications, 2023, 27 (01) : 1 - 18
  • [29] The Distributed Minimum Spanning Tree Problem
    Schmid, Stefan
    Pandurangan, Gopal
    Robinson, Peter
    Scquizzato, Michele
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2018, (125): : 51 - 80
  • [30] ON THE MINIMUM DIAMETER SPANNING TREE PROBLEM
    HASSIN, R
    TAMIR, A
    INFORMATION PROCESSING LETTERS, 1995, 53 (02) : 109 - 111