ON THE GENERALIZED MINIMUM SPANNING TREE PROBLEM

被引:85
|
作者
MYUNG, YS
LEE, CH
TCHA, DW
机构
[1] INHA UNIV,DEPT IND ENGN,INCHON,SOUTH KOREA
[2] KOREA ADV INST SCI & TECHNOL,DEPT MANAGEMENT SCI,YUSONG GU,TAEJON 305701,SOUTH KOREA
关键词
D O I
10.1002/net.3230260407
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the Generalized Minimum Spanning Tree Problem (GMSTP). Given an undirected graph whose nodes are partitioned into mutually exclusive and exhaustive node sets, the GMSTP is then to find a minimum-cost tree which includes exactly one node from each node set. Here, we show that the GMSTP is NP-hard and that unless P = NP no polynomial-time heuristic algorithm with a finite worst-case performance ratio can;exist for the GMSTP. We present various integer programming formulations for the problem and compare their linear programming relaxations. Based on the tightest formulation among the ones proposed, a dual-based solution procedure is developed and shown to be efficient from computing experiments. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 50 条
  • [1] A Multigraph Formulation for the Generalized Minimum Spanning Tree Problem
    de Sousa, Ernando Gomes
    de Andrade, Rafael Castro
    Santos, Andrea Cynthia
    [J]. COMBINATORIAL OPTIMIZATION, ISCO 2018, 2018, 10856 : 133 - 143
  • [2] Heuristic search for the generalized minimum spanning tree problem
    Golden, B
    Raghavan, S
    Stanojevic, D
    [J]. INFORMS JOURNAL ON COMPUTING, 2005, 17 (03) : 290 - 304
  • [3] Tabu search for generalized minimum spanning tree problem
    Wang, Zhenyu
    Che, Chan Hou
    Lim, Andrew
    [J]. PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 918 - 922
  • [4] The prize-collecting generalized minimum spanning tree problem
    Golden, Bruce
    Raghavan, S.
    Stanojevic, Daliborka
    [J]. JOURNAL OF HEURISTICS, 2008, 14 (01) : 69 - 93
  • [5] The prize-collecting generalized minimum spanning tree problem
    Bruce Golden
    S. Raghavan
    Daliborka Stanojević
    [J]. Journal of Heuristics, 2008, 14 : 69 - 93
  • [6] Heuristics for the strong generalized minimum label spanning tree problem
    Cerrone, Carmine
    D'Ambrosio, Ciriaco
    Raiconi, Andrea
    [J]. NETWORKS, 2019, 74 (02) : 148 - 160
  • [7] A new relaxation method for the generalized minimum spanning tree problem
    Pop, PC
    Kern, W
    Still, G
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 170 (03) : 900 - 908
  • [8] A polyhedral approach to the generalized minimum labeling spanning tree problem
    da Silva, Thiago Gouveia
    Gueye, Serigne
    Michelon, Philippe
    Ochi, Luiz Satoru
    Formiga Cabral, Lucidio dos Anjos
    [J]. EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2019, 7 (01) : 47 - 77
  • [9] A tabu search heuristic for the generalized minimum spanning tree problem
    Oncan, Temel
    Cordeau, Jean-Francois
    Laporte, Gilbert
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 191 (02) : 306 - 319
  • [10] On the prize-collecting generalized minimum spanning tree problem
    Pop, P. C.
    [J]. ANNALS OF OPERATIONS RESEARCH, 2007, 150 (01) : 193 - 204